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Executive summary

SustainML project aims to develop a design framework and an associated toolkit, so-called SustainML,
that will foster energy efficiency throughout the whole life-cycle of Machine Learning (ML) applications:
from the design and exploration phase that includes exploratory iterations of training, testing and opti-
mizing different system versions through the final training of the production systems (which often involves
huge amounts of data, computation and epochs) and (where appropriate) continuous online re-training
during deployment for the inference process. The framework will optimize the ML solutions based on the
application tasks, across levels from hardware to model architecture. It will also collect both previously
scattered efficiency-oriented research, as well as novel Green-AI methods. Artificial Intelligence (AI) de-
velopers from all experience levels can make use of the framework through its emphasis on human-centric
interactive transparent design and functional knowledge cores, instead of the common blackbox and fully
automated optimization approaches.

This report corresponds to Deliverable D1.1 - Task modeling from user definition results of the SustainML
project. This deliverable covers the results of T1.1, T1.2 and T1.3 from WP1. Although common
approaches to similar taxonomy adopt a wide top-down approach, we consider those to be too abstract and
lack of real application grounding and thus ignore the target users’ perspective as discussed in section 1.
We thus conduct our research in a combination of top-down abstraction, as well as building narrower yet
generalisable application-oriented studies and prototypes from the bottom-up approach.

While still in the early stages of the project, several components of our work has already been published
or in the review process of international academic venues:

1. A Knowledge Distillation framework for Multi-Organ Segmentation of Medaka Fish in Tomographic
Image has been accepted for publication on IEEE International Symposium on Biomedical Imaging
(ISBI http://2023.biomedicalimaging.org/)

2. Latent Inspector: An Interactive Tool for Probing Neural Network Behaviors Through Arbitrary
Latent Activation has been submitted to the International Joint Conference on Artificia Intelligence
(IJCAI https://ijcai-23.org)

3. FieldHAR: A Fully Integrated End-to-end RTL Framework for Human Activity Recognition with
Neural Networks from Heterogeneous Sensors has been submitted to the IEEE International Confer-
ence on Application Specific Systems, Architectures and Processors (ASAP https://www.asap2023.org)
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Acronyms

AI Artificial Intelligence.
CNN convolutional neural networks.
DL Deep Learning.
FPGA field programmable gate arrays.
HAR human activity recognition.
HW Hardware.
LLM Large Language Model.
MCU micro-controller.
ML Machine Learning.
RDF Resource Description Framework.
RNN recurrent neural networks.
RTL register transfer level.
SOTA State of the Art.
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1 Introduction

1.1 Related literature

Defining an ML taxonomy has always been an important research topic to keep an informative summary
of the large and diverse mass of ML problems, applications, and techniques. Traditionally it is common,
not only in the area of AI, to structure contents within umbrella terms to clarify the perception and
understanding of the proposed contents. However, there is no clear guideline on how to organize and
group the ML landscape in order to maintain usability and explainability due to the ever-increasing
amount of different ML areas to cover. [1]

Most of the available ML taxonomies from current research only address a specific ML topic. In [2], a
hierarchical taxonomy of ML algorithms is provided by clustering well-known algorithms by its learning
strategy, for instance, Principal Component Analysis and K-Means within Unsupervised Learning. The
resulting graph comprises the major umbrella terms of ML topics together with their related algorithms
in form of a hierarchical tree structure. More detailed ML taxonomies are presented in [3] through two
structured tables. The first one introduces similar content to [2] by segmenting ML algorithms into
three hierarchical partitions, starting with the ML paradigm to the actual algorithm and a description
containing some algorithm-specific in-depth information at last. The second table targets the applications
of ML by listing the application with a comprehensive description. This kind of taxonomy further
supports the definition of ML problems and can therefore be used to support our approach of building
a ML taxonomy from the users’ perspective. Another application-specific taxonomy is presented in [4].
Based on multi-modal machine learning, challenges like for instance fusion or co-learning are linked to
the appropriate applications.

In summary, the existing ML taxonomies are mostly kept too general and abstract. They cannot picture
the whole versatility of the ML landscape with sufficient depth of detail. For this project, it is essential
to merge all present information into a uniform, adaptable, and most importantly usable data structure.
Therefore, we are building a knowledge base covering the whole ML task modeling from the user problem
description to the technical implementation.

The existing ML taxonomies are typically based on relational database structures like tree structures or
tables. Such structures tend to become unclear and are therefore unusable due to the increasing com-
plexity of the content, requiring more progressive methods. A widespread method to resolve this issue
is semantic-oriented graph structures that can cover highly complex and interconnected content while
preserving the ability to explore and query the structure [5]. From the technical side, the Resource De-
scription Framework (RDF) has been established to store graph-oriented data structures with a universal
syntax.

A more natural way of representing a knowledge base is presented in [6]. Instead of storing the data in a
syntax-oriented structure like RDF, this approach resolves the need for schema engineering and forwards
the knowledge into a language model. From the user’s perspective, the knowledge base can not only be
accessed with fixed commands, moreover, the information can be queried and also presented with natural
language commands.

1.2 Related toolkits

Large Language Model (LLM) like ChatGPT has recently made a huge global impact with generative
AI. It is also capable of outputting code. However, the fundamental operating principle of large language
models relies on generating results based on probability in the large training dataset. The limitation
is apparent after some quick trials with specific expert queries. For example, we queried ChatGPT
with two questions from different fields as shown in table 2. While looking at individual answers, the
answer appears to provide a coherent solution. However, there lacks any reasoning as to how each listed
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how do I make a python script for human activity recognition
from IMU data using deep learning?

how do I make a python script for speech enhancement in audio
data for hearing aids?

And the answer is:
To create a Python script for human activity recognition from
IMU data using deep learning, you can follow the steps below:
Collect IMU data: Collect the Inertial Measurement Unit
(IMU) data from the sensor. An IMU typically consists of an
accelerometer, gyroscope, and magnetometer.
Preprocess the data: The IMU data may contain noise and
bias that needs to be removed. You can apply signal processing
techniques to preprocess the data, such as low-pass filtering,
normalization, and feature extraction.
Prepare the dataset: The dataset should be split into training,
validation, and test sets. The dataset should also be labeled
with the corresponding human activity for each data point.
Build a deep learning model: Use a deep learning framework like
TensorFlow or PyTorch to build a neural network for activity
recognition. The model should be trained on the training set
using the labeled data. You can use a convolutional neural
networks (CNN) or a recurrent neural networks (RNN) for this
task.
Evaluate the model: Evaluate the performance of the model
on the validation set. You can use metrics such as accuracy,
precision, and recall to evaluate the performance of the model.
Test the model: Once the model is trained and validated, you
can test the model on the test set to check its real-world per-
formance.
Here is a sample Python code snippet for activity recognition
using CNN:

To create a Python script for speech enhancement in audio data
for hearing aids, you can follow the steps below:
Collect audio data: Collect audio data from the hearing aids.
You can use a microphone to record the audio data.
Preprocess the data: Preprocess the audio data by removing
noise and applying gain normalization.
Prepare the dataset: The dataset should be split into training,
validation, and test sets. The dataset should also be labeled
with the corresponding clean speech for each data point.
Build a deep learning model: Use a deep learning framework
like TensorFlow or PyTorch to build a neural network for speech
enhancement. The model should be trained on the training set
using the labeled data. You can use a convolutional neural
network (CNN) or a recurrent neural network (RNN) for this
task.
Evaluate the model: Evaluate the performance of the model on
the validation set. You can use metrics such as signal-to-noise
ratio (SNR), perceptual evaluation of speech quality (PESQ),
and mean opinion score (MOS) to evaluate the performance of
the model.
Test the model: Once the model is trained and validated, you
can test the model on the test set to check its real-world per-
formance.
Here is a sample Python code snippet for speech enhancement
using a denoising autoencoder:

import tensorflow as tf
from tensorflow.keras.layers import Conv1D, MaxPooling1D,

Dropout, Flatten, Dense

# Build the CNN model
model = tf.keras.Sequential([

Conv1D(64, kernel_size=3, activation='relu',
input_shape=(timesteps, features)),

Conv1D(64, kernel_size=3, activation='relu'),
MaxPooling1D(pool_size=2),
Dropout(0.5),
Conv1D(128, kernel_size=3, activation='relu'),
Conv1D(128, kernel_size=3, activation='relu'),
MaxPooling1D(pool_size=2),
Dropout(0.5),
Flatten(),
Dense(128, activation='relu'),
Dropout(0.5),
Dense(num_classes, activation='softmax')

])

# Compile the model
model.compile(loss='categorical_crossentropy',

optimizer='adam',
metrics=['accuracy'])

# Train the model
model.fit(X_train, y_train, batch_size=64, epochs=50,

validation_data=(X_val, y_val))

# Evaluate the model
loss, accuracy = model.evaluate(X_test, y_test)
print("Accuracy: {:.2f}%".format(accuracy * 100))

import tensorflow as tf
from tensorflow.keras.layers import Input, Conv1D,

MaxPooling1D, UpSampling1D
from tensorflow.keras.models import Model
# Build the denoising autoencoder model
input_audio = Input(shape=(timesteps, features))
x = Conv1D(32, 3, activation='relu', padding='same')

(input_audio)
x = MaxPooling1D(2, padding='same')(x)
x = Conv1D(64, 3, activation='relu', padding='same')(x)
x = MaxPooling1D(2, padding='same')(x)
x = Conv1D(128, 3, activation='relu', padding='same')(x)
encoded = MaxPooling1D(2, padding='same')(x)

x = Conv1D(128, 3, activation='relu', padding='same')
(encoded)

x = UpSampling1D(2)(x)
x = Conv1D(64, 3, activation='relu', padding='same')(x)
x = UpSampling1D(2)(x)
x = Conv1D(32, 3, activation='relu', padding='same')(x)
x = UpSampling1D(2)(x)
decoded = Conv1D(1, 3, activation='sigmoid',

padding='same')(x)

autoencoder = Model(input_audio, decoded)
autoencoder.compile(optimizer='adam',

loss='binary_crossentropy')
# Train the model
autoencoder.fit(X_train, y_train, epochs=50,

batch_size=128, shuffle=True,
validation_data=(X_val, y_val))

# Evaluate the model
loss = autoencoder.evaluate(X_test, y_test, verbose=0)
print("Loss: {:.2f}".format(loss))
# Apply the model to new audio data
enhanced_audio = autoencoder.predict(audio_data)

Table 2: Example of using ChatGPT to generate solutions of specific ML problems
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method (RNN, CNN, etc), being already very abstract, is different from each other. Also comparing both
answers, an obvious common pattern can be extracted. Indeed this is a common workflow, however, the
level of detail provided at each step is not sufficient for the users to directly solve their problems. And
when details are queried, LLMs tend to generate hallucination answers [7]. Even the latest and most
potent LLM GPT-4 has been found lacking planning in arithmetic and reasoning problems [8]. This then
inspires us to develop a cataloged knowledge system by which clear explanations and logic pathways can
be formed instead of uniform probabilistic language search. However, a knowledge base is not necessarily
exclusive to LLMs as LLMs can be leveraged to help interact with the expert user to narrow down queries
or suggest relevant information.

On the other hand, there are several community hubs as a centralized repository of ML solutions. Hug-
gingFace (https://huggingface.co) for example hosts over 150,000 ML models as of the writing of this
report. While they provide specific solutions to certain problems, the topics are largely scattered and
heavily lean towards vision and language modalities. From the usability aspects, those hosted models are
often difficult for ML specialists to graft and repurpose for their own projects, let alone domain experts
with limited knowledge and ML code maneuver expertise.

2 Progresses of WP1

2.1 Overall methodology

Figure 1: Development stages throughout the entire life cycle of ML model from initial conceptualisation
phase to final deployment.

To provide a comprehensive solution for sustainable ML, the entire lifecycle of a ML model, which is
outlined in fig. 1, needs to be taken into account. Basically, the lifecycle consists of four stages starting
with the conceptualization of the model design to training and optimization of the model after which it
results in the deployment phase to put the model into operation.

WP1 is mostly centralized on the first two phases, the conceptualize and model design phase, but will
foresee the constraints from the downstream phases of the model lifecycle, especially the Hardware (HW)
constraints. Therefore, the exchange between the project partners and work packages is essential in order
to not only consider the individual stages but also the coherence throughout the entire lifecycle in terms
of sustainability.
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2.2 ML task modeling knowledge base

The literature provides comprehensive machine learning taxonomy. For example, in [9], from the tradi-
tional ML paradigms of supervised, unsupervised, and reinforcement learning to the modern paradigm
categorizations of

1. Multi-label learning;

2. Semi-supervised learning;

3. One-class classification;

4. Positive-unlabeled learning;

5. Transfer learning;

6. Multi-task learning;

7. Few/one-shot learning.

Figure 2: Taxonomy of DL techniques from [10].

A more technique-specific taxonomy is presented in [10] as shown in fig. 2. While those published
taxonomy results provide clear guidance of Deep Learning (DL) technique categorization, none of the
existing taxonomy can be directly used to model ML tasks, especially for target user groups who have
limited knowledge of ML paradigms. We therefore will construct a scalable knowledge system to not only
cover the multifaceted ML landscape but also be used to query and construct solution pathways for new
application-specific problems.

Therefore, we use the RDF to create a comprehensive and easily expandable knowledge graph database.
Compared to existing, technical and data-driven structures, rdf serves the purpose of modeling metadata
in form of graph data. Together with the State of the Art (SOTA) Terse RDF Triple Language (Turtle)
syntax, simple subject-predicate-object relationships can be defined and stored in the Knowledge Graph
database in form of a .ttl file. Each relationship constitutes one connection between two nodes, whereon
the whole graph structure is built on. The predicate defines the type of connection and can be further
utilized to create hierarchies and flow directions within the graph.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 9
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Figure 3: Visualization of part of the knowledge graph being constructed.

To cover the majority of ML problems, we use the existing literature from publications that present a
taxonomy of ML problems and metadata from publication abstracts to extend those. After generating a
basic graph containing hierarchical problem definitions and goals together with the related algorithms to
solve, we gathered further knowledge from ML experts to refine the graph. To do so, various data types
and sources together with more refined types of algorithms complete the knowledge graph.

To use the knowledge base in a useful manner, multiple ways are possible to visualize and iterate through
the graph due to the generalized RDF syntax. To overall verify the correct creation of the knowledge
graph, we utilize the tool Ontotext GraphDB to visually check the nodes and interconnections between
them. In fig. 3, a part of the knowledge graph is visualized through GraphDB, following the hierarchical
flow of connected nodes. Nevertheless, other commercial tools like Blazegraph or Virtuso may be used
as well.

In order to not only visualize the knowledge base but also be able to use it actively, it must be possible
to embed the uniform format in the best possible way. Rather, a system must be developed that can
search the knowledge base and extract all related and relevant paths. Therefore we build a prototype
based on the rdflib python library [11] for querying through RDF structures with help of the SPARQL
query language. Unified semantics and syntax are defined through SPARQL to thoroughly inspect the
knowledge graph based on search requests. We are embedding this prototype into an appropriate system
to support the process of modeling ML tasks from user definitions and to make it more intuitive. As
an example, we already have the Interactive Latent Space Explorer, which we are introducing in the
following section, that can potentially be extended to serve as a basis.

Such an expert system will then query through the knowledge graph and locate pathways from the input
node to the ML goals. There could result in several parallel pathways, which promotes exploring differ-
ent solutions. The ’islike’ keyword also provides knowledge transfer on similar modalities. For example,
for a temporal data classification problem as shown in fig. 3, the shortest pathway is TemporalData-
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TemporalConvolution-Features-FullyConnected-Labels, which essentially reflects the standard answer
given by ChatGPT in table 2. However, there are also other possible pathways like TemporalData-
STFT(short time Fourier transform)-Spectrogram-Open13-Features-FullyConnected-Labels. This sug-
gests an alternative solution of using frequency analysis ML models (Open13 in this case) for feature
extraction. Furthermore, after the Spectrogram node, there is an ’islike’ link to ImageData, and then
use image classification models. This type of transfer learning also exists in the domain-expert literature
such as [12].

2.3 Interactive heterogeneous multimodal tool

Figure 4: Modularity of the Interactive Latent Space Explorer architecture as an option to embed the
ML knowledge base.

A project related to the topic of the ML knowledge base is the Interactive Latent Space Explorer. Based
on the approach to start from an already existing and trained model, the Interactive Explorer constitutes
an active software instrument allowing deep learning architects to interactively inspect neural network
models’ output behavior from user-manipulated values in any latent layer. The focus of the tool is on the
technical aspects of the ML model, as it mainly analyzes the depths of the individual layers to dissolve
the black box behavior of the model’s architecture. Together with SOTA dimension reduction techniques,
valuable representations of the model’s latent space are visualized through interactive plots.

Beyond the scope of latent space, the interactive explorer provides a software foundation where user
interactions can trigger ML model codes in the back-end, which can be further developed for other
interactions such as linking the back-end to the knowledge base. As outlined in fig. 4, the interactive
explorer obtains a common front-end and back-end architecture which is currently used to activate the
inspected models in the back end through user interface interactions in the front end. The system
implements a modular and versatile approach not only to accept a large variety of custom models for its
initial use case, moreover it inherits the possibility to be extended with other use case scenarios like the
knowledge base. To realize this, the back end needs to be connected with the knowledge base to perform
search queries based on the guidance and interactions within the front end’s user interface.

2.4 HW resource aware ML design

A major limitation of existing ML taxonomy or solution generation tools are that they stay on the pure
theoretical level and do not consider the actual hardware platform. While at the deployment stage,
many ML models will run on a different hardware environment than the training stage for a long period
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of time until their decommission. These inference hardware like microprocessors often have different
(often inferior) algorithmic capabilities than AI training accelerators. For example limited bit precision,
multiplier, memory for storing the model, etc. To optimize trained complex models for long time inference
on those hardware causes repeated work and creates wasted resources retrospectively during the training
phase, as the training phase may be considered over-complicating unpractical solutions. Therefore for
generating end-to-end solutions, it is important to consider the HW aspect during the early phases of the
AI lifecycle. This can also fully leverage the vision of the SustainML framework as the domain expert
would have expectations of the end usecase, which with the help of the framework we can narrow down
solution pipelines with HW aware optimization.

To this end we have conducted a usecase implementation with heterogenous sensors and CNN-based sensor
fusion human activity recognition (HAR) tasks - FieldHAR. FieldHAR is developed as a scalable register
transfer level (RTL) framework as a result of iterative hardware-software co-optimization. FieldHAR
aims to address the lack of apparatus to transform complex HAR methodologies often limited to offline
evaluation to efficient run-time edge applications. The framework uses parallel sensor interfaces and
integer-based multi-branch CNNs to support flexible modality extensions with synchronous sampling at
the maximum rate of each sensor. To validate the framework, we used a sensor-rich kitchen scenario HAR
application which was demonstrated in a previous offline study. Through resource-aware optimizations,
with FieldHAR the entire RTL solution was created from data acquisition to ANN inference taking
as low as 25% logic elements and 2% memory bits of a low-end Cyclone IV field programmable gate
arrays (FPGA) and less than 1% accuracy loss from the original FP32 precision offline study. The RTL
implementation also shows advantages over micro-controller (MCU) based solutions, including superior
data acquisition performance and virtually eliminating ANN inference bottleneck.

Sensor Interface 1

Sensor Interface 2

Sensor Interface n

.

.

.

Peripheral Driver

Sensor Driver

FIFO

Sensor Data RAM

Sensor Interface 
Module

Debug Interface (UART)

CNN Feature 
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Feature RAM

NN Arctecture 
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Interference Block
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Data Stream
Controller
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Data Stream
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Inference
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Top Controller Module

Figure 5: The FieldHAR RTL framework helping us explore the hardware constraints through iterative
hardware-software co-optimization in a heterogeneous modality setting.

3 Future works in the following period

3.1 Plans for WP1

Referring again to figure 1, this deliverable mainly considers the first stage of the ML lifecycle to concep-
tualize a model from an abstract human description into a unified machine description. Our RDF-based
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knowledge base covers the ML landscape with a taxonomy from meta information like goals and problems
to highly technical properties like datatypes, algorithms, and DL techniques. For the future, there is not
only the need to further extend this knowledge base with more specific details, moreover, but we also
aim to include it in more sophisticated systems that actually benefit from this large set of information.
To ensure a sufficient user experience in this phase of conceptualizing the ML project, we will integrate
the knowledge graph search into a user interface-based system to interactively explore the knowledge
base.

Targeting the second state of the ML lifecycle, we are moving from a purely textual and graph-based
representation of knowledge to an even more connected representation by linking search results of the
graph to code examples from already existing projects. In terms of sustainability, we cannot only reduce
the users’ time and effort in conceptualizing the ML problem but more importantly reduce the carbon
footprint when recycling already existing projects that are identical or at least similar to the user’s
problem statement. From there on, the process of gathering code from user descriptions can be further
used by the other project partners working on optimizing the following stages of the ML lifecycle.

We will also work on integrating models hosted on HuggingFace with our knowledge database, so that
curated models on HuggingFace will have corresponding nodes in the database which can be integrated
in querried solutions.

3.2 Joint work with other WPs

The collaboration with WP2, WP3, and WP4 will further integrate the knowledge base into the ML
lifecycle. For WP2, we target a better understanding of HW constraints and active optimization for
better HW utilization. For WP3, we aim to measure the energy savings potential of the knowledge base.
For WP4, a more extended user study will help in extending the knowledge base.

The following list states the detailed plans of the joint work with other WPs:

Joint with WP2:

1. Extend FieldHAR with the consortium HW expertiese

2. Pruning and quantization, especially quantization-aware training

3. Edge training and retraining for prolonged lifecycle with field data

4. Establish FPGA-based HW constraint including both NN accelerators and neuromorphic imple-
mentations. With such constraints, the SustainML expert system could provide more customized
optimization if the inference devices are specified by the users.

Joint with WP3:

1. Literature review for ML model optimizations with a strong focus on sustainability and carbon
footprint

2. Combination of Carbon Tracker [13] and the knowledge base to predict carbon footprint and possible
savings throughout the ML lifecycle

Joint with WP4:

1. HCI-oriented domain expert user studies to validate and refine the knowledge base
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