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Executive summary

There are many aspects to consider when assessing the cost of developing artificial intelligence (AI)
models. These can be of monetary nature such as infrastructure costs and access to compute devices, but
also expertise and know-how within specific domains, in order to best utilize developer time. Primarily,
development costs are encountered at different stages of the development life cycle: dataset curation,
model selection, model training, and model deployment. Nevertheless, a common resource, or cost, for
all stages is energy consumption. In the last decade, we have seen the energy consumption of selecting,
training and deploying models grow exponentially, and it has become apparent that the bottleneck for
scaling AI is energy consumption more than it is raw compute. Therefore, our goal in this work is to
support the design of energy-efficient models that require less compute to train and thereby prioritizes
environmental sustainability, targeting model selection and training.

Neural Architecture Search (NAS) strategies, which explore model architectures based on training and
evaluation metrics, have demonstrated their ability to reveal novel designs with state-of-the-art per-
formance. While promising, NAS comes with computational and energy-intensive demands, leading to
significant environmental concerns due to the carbon footprint incurred due to energy consumption.
Hence, there is an imperative to address the balance between performance and resource efficiency in
NAS. Today’s NAS algorithms and benchmarks focus mainly on standard performance measures like
accuracy, and efficiency w.r.t. compute time. However, the ladder does not encapsulate the underlying
dynamics of model design and hardware utilization and compute time can become obscured in scenarios
like federated learning and parallel paradigms.

We advocate for including energy efficiency as an additional performance criterion in NAS. To this end, we
introduce a tabular benchmark encompassing data on energy consumption for varied architectures. The
benchmark, designated as EC-NAS, has been made available in an open-source format to advance research
in energy-conscious NAS. EC-NAS incorporates a surrogate model to predict energy consumption, aiding
in diminishing the energy expenditure of the dataset creation. Our findings emphasize the potential
of EC-NAS by leveraging multi-objective optimization algorithms, revealing a balance between energy
usage and accuracy. This suggests the feasibility of identifying energy-lean architectures with little or no
compromise in performance.

This report corresponds to Deliverable D3.1 - Carbon footprint based model optimization tool of the Sus-
tainML project. This deliverable covers an overview of the growing energy consumption problems in
deep learning techniques and the importance of energy-efficient models for real-world applications. A
summary of existing NAS methods, tabular benchmarks, and the current focus on performance as the
primary objective for model development, and why energy efficiency and carbon footprint are crucial
performance/efficiency criteria to consider. Moreover, an important concern when assessing model sus-
tainability regarding energy costs is the ability to measure these costs effectively and accurately across
different compute infrastructures. The tool we developed and employed in this work, Carbontracker, is
also discussed in terms of its ability to educate AI practitioners about their use of computing resources
and the potential impacts and trade-offs among different development practices.

The key contribution in this deliverable is based on [1] which was presented at the International Conference
on Acoustics, Speech and Signal Processing (ICASSP-2024).
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1 Introduction

NAS strategies explore predefined search spaces for potential model architectures, determining fitness
based on validation/test set performance to discover the best-performing architecture [2]. Despite suc-
cess in finding novel designs [3, 4, 5, 6], NAS’s high computational cost, energy consumption, and sig-
nificant carbon footprint are drawbacks [7, 8, 9, 10]. Tabular benchmarks and surrogate models have
improved NAS evaluation efficiency [11, 12, 13, 14, 15, 5, 16], but the focus remains on performance over
efficiency.

Building upon the foundational NAS-Bench-101 [15], we introduce our benchmark, EC-NAS [1], to em-
phasize the imperative of energy efficiency in NAS. Our adaptation of this dataset, initially computed
using an exorbitant 100 TPU years equivalent of compute time, serves our broader goal of steering NAS
methodologies, and model development in general, towards energy consumption awareness.

This deliverable highlights the use of energy consumption as an additional criterion in tabular NAS bench-
marks to discover energy-efficient models for practical deployment and sustainability with the EC-NAS
benchmark [1]. Results show good promise in revealing computationally efficient models that balance en-
ergy consumption and performance with minimal performance loss and smaller carbon footprints.

2 Architecture Space

Central to EC-NAS are architectures tailored for CIFAR-10 image classification [17]. We introduce addi-
tional objectives for emphasizing the significance of hardware-specific efficiency trends in deep learning
models. The architectural space is confined to the topological space of cells, with each cell being a config-
urable feedforward network. In terms of cell encoding, these individual cells are represented as directed
acyclic graphs (DAGs). Each DAG, G(V,M), has N = |V | vertices (or nodes) and edges described in
a binary adjacency matrix M ∈ {0, 1}N×N . The set of operations (labels) that each node can realise is
given by L′ = {input, output} ∪ L, where L = {3x3conv, 1x1conv, 3x3maxpool}. Two of the N nodes
are always fixed as input and output to the network. The remaining N −2 nodes can take up one of the
labels in L. The connections between nodes of the DAG are encoded in the upper-triangular adjacency
matrix with no self-connections (zero main diagonal entries). For a given architecture, A, every entry
αi,j ∈ MA denotes an edge, from node i to node j with operations i, j ∈ L and its labelled adjacency
matrix, LA ∈ MA × L′. In aggregate, we consider DAGs where |V | ≤ 7, encapsulating 423k unique
architectures. As architectures are are examined with varying training budgets of 4, 12, 36, and 108
epochs, to explore potential trade-offs between performance and resource expenditure, EC-NAS contains
≈ 1.6M data points.

We measure the energy consumption of training these architectures on the CIFAR-10 dataset, follow- ing
the protocols to NAS-Bench-101. The in-house SLURM cluster, powered by an NVIDIA Quadro RTX
6000 GPU and two Intel CPUs, provides a representative environment for model development. The vast
architecture space, however, introduces chal- lenges in the direct energy estimation. Our remedy to this is
a surrogate model approach, wherein we derived insights to guide a multi-layer perceptron (MLP) model
by training using a representative subset of architectures. This surrogate model adeptly predicts energy
consumption patterns, bridging computational demand and energy efficiency.

2.1 Surrogate Energy Predictor

The MLP-based surrogate energy model takes the graph-encoded architecture and the number of pa-
rameters as input, predicting energy consumption for a given number of epochs. This surrogate model
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Figure 1: Scatter plot depicting the Kendall-Tau correlation co- efficient between predicted and actual
energy consumption (left) and the influence of training data size on test accuracy (right). Error bars are
based on 10 random initializations.

is similar to current surrogate NAS methods that have efficiently facilitated NAS evaluations on larger
search spaces and provided more accurate performance estimates than tabular benchmarks [14]. Surro-
gate models are used as one-time compute methods for cost-effective evaluation of NAS methods within
extensive search spaces and do not apply to other search spaces.

The MLP-based surrogate model used for predicting the training energy consumption of the 7V space,
E, is given as: fθ(·) : x ∈ RF → E ∈ R, where θ are the trainable parameters and x consists of the F
features obtained from architecture specifications. We populate x with the upper triangular entries of
the adjacency matrix, operations mapped to categorical variables and the total number of parameters.
For the 7V space, this results in x ∈ R36.

The surrogate energy model is implemented as a simple four-layered MLP with gelu activation functions
and trained using actual energy measurements from 4310 randomly sampled architectures in the 7V space.
The model is implemented in Pytorch and trained on a single NVIDIA RTX 3060 GPU. The training,
validation, and test split has a ratio of [0.7,0.1,0.2], resulting in [3020,430,860] data points, respectively.
Using the Adam optimiser, the MLP is trained for 200 epochs with an initial learning rate of 5 × 10−3

to minimise the L1-norm loss function between the predicted and actual energy measurements.

The resulting surrogate dataset closely approximates the actual training energy costs, with a Kendall-Tau
correlation of 0.9030 between actual and predicted energy measurements on the test set (left) Figure 1.
A high correlation is expected, considering the search space exhibits a high degree of locality, especially
for smaller models. The mean absolute error of predicted and actual energy measurements plateaus when
trained with about 3000 architectures (right), justifying its use for predicting the remaining space.

2.2 Dataset Analysis and Hardware Consistency

Understanding architectural characteristics and the trade-offs they introduce is crucial. This involves
studying operations, their impacts on efficiency and performance, as well as the overarching influence
of hardware on energy costs. Training time and energy consumption trends naturally increase with
model size. However, gains in performance tend to plateau for models characterized by larger DAGs.
Interestingly, while parameter variation across model sizes remains minimal, training time and energy
consumption show more significant variability for more extensive models. These findings highlight the
multifaceted factors affecting performance and efficiency.
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Figure 2: Aggregated impact of swapping one operator for another on energy consumption, training time,
validation accuracy, and parameter count. The figure illustrates how changing a single operator can affect
the different aspects of model performance, emphasizing the importance of selecting the appropriate
operators to balance energy efficiency and performance.

Different operations can also have a profound impact on performance. For instance, specific operation
replacements significantly boost validation accuracy while increasing energy consumption without increas-
ing training time. This complex relationship between training time, energy consumption and performance
underscore the importance of a comprehensive approach in NAS. The impact of swapping one operation
for another on various metrics, including energy consumption, training time, validation accuracy, and
parameter count, is captured in Figure 2.

Furthermore, we probed the energy consumption patterns of models characterized by DAGs with |V | ≤ 4,
spanning various GPUs. This exploration, depicted in Figure 3, confirms the flexibility of the benchmark
across different hardware environments. This adaptability paves the way for advanced NAS strategies,
notably for multi-objective optimization (MOO). It signifies a paradigm shift towards a balanced pursuit
of performance and energy efficiency, echoing the call for sustainable computing.

Figure 3: Energy consumption of models with DAGs where |V | ≤ 4 on different GPUs. Models are
organized by their average energy consumption for clarity.

3 Leveraging EC-NAS in NAS Strategies
Tabular benchmarks like EC-NAS offer insights into energy consumption alongside traditional performance
measures, facilitating the exploration of energy-efficient architectures using multi-objective optimization
(MOO) whilst emphasizing the rising need for sustainable computing. In the context of NAS, MOO
has emerged as an instrumental approach for handling potentially conflicting objectives. We utilize the
EC-NAS benchmark to apply diverse MOO algorithms, encompassing our own simple evolutionary MOO
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Method Arch. T (s) ↓ Pv ↑ E(kWh)↓ |θ|(M)↓
Ar0 15.22 ±2.98 0.52 ±0.02 0.01 ±0.00 5.98 ±0.10

SH-EMOA Ar1 1034.35 ±358.15 0.91 ±0.03 0.27 ±0.11 6.55 ±0.44
Ark 226.28 ±114.03 0.85 ±0.04 0.04 ±0.03 6.27 ±0.43

Ar0 14.23 ±0.00 0.52 ±0.00 0.01 ±0.00 5.95 ±0.00
RS Ar1 1649.11 ±342.02 0.94 ±0.00 0.41 ±0.09 7.05 ±0.18

Ark 310.93 ±56.50 0.89 ±0.03 0.07 ±0.03 6.51 ±0.38

Ar0 14.23 ±0.00 0.52 ±0.00 0.01 ±0.00 5.95 ±0.00
MSE-HVI Ar1 1112.13 ±642.49 0.92 ±0.02 0.25 ±0.14 6.80 ±0.33

Ark 191.09 ±93.13 0.83 ±0.03 0.02 ±0.02 6.01 ±0.18

Ar0 14.23 ±0.00 0.52 ±0.00 0.01 ±0.00 5.95 ±0.00
SEMOA Ar1 2555.95 ±202.42 0.94 ±0.00 0.62 ±0.08 7.26 ±0.15

Ark 306.9 ±41.86 0.92 ±0.01 0.07 ±0.01 6.43 ±0.06

Table 1: Average performance and resource consumption for models. Architectures Ar0 , Ar1 , and Ark

correspond to the two extrema and the knee point, respectively.

algorithm (SEMOA) based on [18] and other prominent algorithms such as SH-EMOA and MS-EHVI from
[19]. These methodologies are assessed against the conventional random rearch (RS) technique.

Our exploration within EC-NAS span both single-objective optimization (SOO) and MOO. We execute
algorithms across various training epoch budgets e ∈ {4, 12, 36, 108} over 100 evolutions with a population
size of 10. For SOO, 1000 evolutions were designated to equate the discovery potential. Results, averaged
over 10 trials, followed the methodology of [19].

For MOO, validation accuracy Pv and the training energy cost, E (in kWh), were chosen as the dual
objectives and, for SOO, simply the performance metric. Given its indifference to parallel computing,
energy consumption was chosen over training time. Inverse objectives were used for optimization in
maximization tasks (e.g., 1 − Pv). Balancing energy efficiency with performance presents a layered
challenge in NAS. Figure 4 elucidates the architectural intricacies and the prowess of various MOO
algorithms in identifying energy-conservative neural architectures.

Figure 4 (left) evaluates the architecture discovery efficacy of MOO algorithms, presenting the median
solutions achieved over multiple runs. SEMOA, in particular, showcases an even distribution of models
attributed to its ability to exploit model locality. In contrast, SH-EMOA and MSE-HVI display a more
substantial variation, highlighting the robust search space exploration of SEMOA.

The Pareto front, as depicted in Figure 4 (center), highlights extrema (r0, r1) and the knee point (rk),
which represents an optimal trade-off between objectives. The extrema prioritize energy efficiency or
validation accuracy, while the knee point achieves a balanced feature distribution. MOO algorithms’
capability to navigate the NAS space effectively is evident in their identification of architectures that
balance competing objectives.

4 Energy Consumption Awareness

NAS for efficient architectures has primarily focused on optimising run-time or floating point operations
(FPOs) [20]. However, FPOs may not fully represent model efficiency [21, 22, 23]. Recently, energy
consumption-optimised hyperparameter selection was studied outside NAS settings for large language
models [24]. Energy consumption during model training encompasses aspects not covered by standard
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Figure 4: (Left) The attainment curve showing median solutions for 10 random initializations on the
surrogate 7V space from EC-NAS dataset. (Center) A representation of the Pareto front for one run of
SEMOA. (Right) Summary of metrics for the extrema and knee point architectures for one SEMOA run.

resource constraints like FPOs, computational time, and the number of parameters. For instance, given
the variability in computational time, owing to diverse factors like parallel infrastructure, this metric
can occasionally be misleading. Energy consumption, in contrast, lends itself as a more con- sistent and
comprehensive measure, factoring in software and hardware variations, making it a suitable additional
objective for NAS.

Roughly 75% of total energy costs when training neural networks come from hardware accelerators like
GPUs, and TPUs [9, 25]. The rest is mainly due to CPUs and DRAM, with supporting infrastructure
accounted for by power usage effectiveness (PUE). Open-source tools like experiment-impact-tracker
[21], Carbontracker [9], and CodeCarbon [26] help track energy consumption. In EC-NAS, the energy
consumption is estimated with Carbontracker [9], monitoring GPUs, CPUs, and DRAM to determine
total energy costs, E (kWh), carbon footprint (kgCO2eq), and total computation time, T (s) summarised
in Table 2.

Metrics Unit of measurement Notation

Model parameters Million (M) |θ|
Test/Train/Eval. time Seconds (s) T (s)
Test/Train/Val. Acc. R ∈ [0; 1] Pv

Energy consumption Kilowatt-hour (kWh) E(kWh)
Power consumption Joule (J), Watt (W) E(J), E(W)
Carbon footprint kgCO2eq –
Carbon intensity g/kWh –

Table 2: Metrics reported in EC-NAS-Bench.

5 Discussion

5.1 Carbontracker

CarbonTracker [9] is a Python tool designed to estimate and track the carbon emissions associated with
the usage of computational resources, particularly in machine learning and other data-intensive applica-
tions. It helps users become more aware of the environmental impact of their computational workloads
and make more sustainable choices. An overview of its functionalities are described below:

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 9
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• Emission Estimation: CarbonTracker estimates the carbon emissions produced by running a
specific computational job. This estimation is based on the energy consumption of the hardware
used (such as CPUs and GPUs) and the carbon intensity of the electricity grid where the hardware
is located.

• Usage Monitoring: The tool can monitor the usage of computational resources in real-time,
allowing users to track the energy consumption of their jobs as they run.

• Geographical Awareness: CarbonTracker takes into account the geographical location of the
data center or computing facility to provide more accurate carbon emission estimates. This is
important because the carbon intensity of electricity can vary significantly between different regions.

• Reporting: After a job completes, CarbonTracker generates detailed reports that include the
total energy consumed, the carbon emissions produced, and other relevant metrics. These reports
can help users understand the environmental impact of their work and identify opportunities for
improvement.

• Optimization Suggestions: By analyzing the data collected, CarbonTracker can provide sug-
gestions on how to optimize resource usage and reduce carbon emissions. This might include
recommendations on more efficient coding practices, alternative algorithms, or more sustainable
computing resources.

• Integration with Workflows: CarbonTracker is designed to be easily integrated into existing ma-
chine learning workflows. It can be used with popular machine learning frameworks like TensorFlow
and PyTorch, allowing users to seamlessly incorporate carbon tracking into their projects.

In addition, Carbontracker can also be used in non-intrusive mode that can be useful to integrate with
non-GPU workflows.

carbontracker y ou r s c r i p t

5.2 Measurements from Carbontracker

Our measurements account for the energy consumption of Graphics Processing Units (GPUs), Central
Processing Units (CPUs), and Dynamic Random Access Memory (DRAM), with the CPU energy usage
inclusive of DRAM power consumption. Energy usage data is collected and logged at 10-second intervals,
and this information is averaged over the duration of model training. The total energy consumed is then
calculated and reported in kilowatt-hours (kWh), where 1kWh = 3.6 · 106Joules (J). In addition, we as-
sess the emission of greenhouse gases (GHG) in terms of carbon dioxide equivalents (CO2eq), calculated
by applying the carbon intensity metric, which denotes the CO2eq emitted per kWh of electricity gener-
ated. This carbon intensity data is updated every 15 minutes during model training from a designated
provider.

Space Red. GPU days Red. kWh Red. kgCO2eq

4V 3.758 48.931 6.327

5V 121.109 1970.495 252.571

7V 14037.058 259840.907 –

Table 3: Estimated reduction in actual resource costs when creating EC-NAS dataset for the 4V and 5V
using linear scaling and 7V space using the surrogate model.

However, considering only the direct energy consumption of these components does not fully capture the
carbon footprint of model training, as it overlooks the energy consumption of auxiliary infrastructure,
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such as data centers. To address this, we refine our estimations of energy usage and carbon footprint by
incorporating the 2020 global average Power Usage Effectiveness (PUE) of data centers, which stands at
1.59, as reported in [27].

5.3 Surrogate model adaptability

Our surrogate energy model is promising in predicting energy consumption within our current search
space. We have also adapted the surrogate model to the OFA search space, achieving comparable results
in terms of energy consumption prediction. This suggests the potential for the surrogate model to be
generalized and applied to other search spaces, broadening its applicability and usefulness in future
research. Estimates for reduction in compute costs for the EC-NAS benchmark datasets are presented in
Table 3.

While a comprehensive investigation of the surrogate model’s performance in different search spaces is
beyond the scope of this work, it is worth noting that the model could potentially serve as a valuable tool
for researchers seeking to optimize energy consumption and other efficiency metrics across various archi-
tectural search spaces. Further studies focusing on the adaptability and performance of surrogate models
in diverse search spaces will undoubtedly contribute to developing more efficient and environmentally
sustainable AI models.

Hardware accelerators have become increasingly efficient and widely adopted for edge computing and
similar applications. These specialized devices offer significant performance improvements and energy
efficiency, allowing faster processing and lower power consumption than traditional computing platforms.
However, deriving general development principles and design directions from these accelerators can be
challenging due to their highly specialized nature. Moreover, measuring energy efficiency on such devices
tends to be hardware-specific, with results that may need to be more easily transferable or applicable
to other platforms. Despite these challenges, we acknowledge the importance and necessity of using
hardware accelerators for specific applications and recognize the value of development further to improve
energy efficiency and performance on these specialized devices.

5.4 Insights from ECNAS experiments

While we recognize the value of conducting NAS experiments on multiple datasets, the current compu-
tational and environmental constraints limit our ability to do so comprehensively. We believe that the
insights gained from our existing experiments on CIFAR10 are relevant to the use-case of image classifi-
cation in WP6, and indicative of our method’s potential. Further justification is provided below:

1. Resource Limitations: Conducting NAS experiments across multiple datasets is highly resource-
intensive. Each NAS run involves training numerous candidate architectures, which requires sub-
stantial computational resources and time. Given our current computational infrastructure, it is
impractical to perform these extensive experiments across multiple datasets within a reasonable
timeframe.

2. Environmental Considerations: The energy consumption associated with large-scale NAS ex-
periments has significant environmental impacts. Running multiple extensive experiments would
exponentially increase our carbon footprint, which we are striving to minimize with our tabular
benchmarks for NAS.

3. Transferability and Generalization: Our single-dataset experiments have already provided
valuable insights into the efficiency and effectiveness of the proposed ECNAS method. The observed
architectural patterns and hyperparameter sensitivities indicate that the discovered architectures
have a high potential for transferability and generalization to other datasets.
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D3.1 - Carbon footprint based model optimization tool

4. Benchmark Comparisons: Our results have been benchmarked against existing state-of-the-
art methods on the chosen dataset, demonstrating competitive performance. These benchmarks
provide a strong indication of our method’s robustness and effectiveness.

We acknowledge the importance of comprehensive multi-dataset evaluations and plan to explore this in
future work.

6 Conclusion

Our work presented EC-NAS, a novel neural architecture search (NAS) benchmark that incorporates
energy consumption awareness, expanding upon the traditional focus on performance metrics. Combin-
ing this additional objective with multi-objective optimisation (MOO) strategies allows energy-efficient
architectures to be identified while maintaining competitive performance. Adopting an energy-aware ap-
proach in NAS is crucial for mitigating the environmental impact of training large-scale neural networks,
as hardware accelerators contribute significantly to energy consumption. EC-NAS enables researchers to
explore the trade-offs between performance, energy consumption, and other standard metrics, supporting
informed decision-making in architecture selection and ultimately promoting the development of more
sustainable AI systems.
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