
This project has received funding from the European Union’s
Horizon Europe research and innovation programme (HORIZON-
CL4-2021-HUMAN-01) under grant agreement No 101070408

Application Aware, Life-Cycle Oriented
Model-Hardware Co-Design Framework
for Sustainable, Energy Efficient ML Systems

Resource utilization aware
ML framework

Deliverable D3.2

WP3 - Energy Consumption Optimized
ML Toolkit and Methods

D3.2 - Resource utilization aware ML framework

Project

Title: SustainML: Application Aware, Life-Cycle Oriented Model-Hardware
Co-Design Framework for Sustainable, Energy Efficient ML Systems

Acronym: SustainML
Coordinator: eProsima

Grant agreement ID: 101070408
Call: HORIZON-CL4-2021-HUMAN-01

Program: Horizon Europe
Start: 01 October 2022

Duration: 36 months
Website: https://sustainml.eu
E-mail: sustainml@eprosima.com

Consortium: eProsima (EPROS), Spain
DFKI, Germany
TU Kaiserslautern (TUK), Germany
University of Copenhagen (KU), Denmark
National Institute for Research in Digital Science and

Technology (INRIA), France
IBM Research GmbH, Switzerland
UPMEM, France

Deliverable

Number: D3.2
Title: Resource utilization aware ML framework

Month: 18
Work Package: WP3 - Energy Consumption Optimized ML Toolkit and Methods

Work Package leader: KU
Deliverable leader: KU
Deliverable type: R,DEM

Dissemination level: PU
Date of submission: 2024-03-31

Version: v1.0
Status: Finished

Version history

Version Date Responsible Author/Reviewer Comments

v1.0 31-03-2024 Raghavendra
Selvan

Bob Pepin

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 2

D3.2 - Resource utilization aware ML framework

Executive summary

This deliverable, corresponding to Deliverable D3.2 - Resource utilization aware ML framework of Sus-
tainML project focuses on advancing Task 3.2 on ”Resource Aware Training Cycle Modeling”. This
report documents the methods developed that address the resource costs associated with the training
phase of machine learning (ML) model development. We introduce three novel methodologies that sig-
nificantly enhance the training efficiency of ML models by optimizing the number of training examples
required, minimizing the necessity for labeled data, and reducing memory consumption. These optimiza-
tions subsequently impact computational demand, energy usage, and the carbon footprint of training ML
models.

Dataset condensation (DC) focuses on generating smaller, synthetic datasets that encapsulate the critical
information from larger datasets. This approach enables ML models to achieve performance comparable
to those trained on full datasets but with a reduced data budget. In Section 2, we introduce a method
leveraging finite coverings for dataset condensation, providing adversarial robustness guarantees and
demonstrating a balanced trade-off between model performance, efficiency, and robustness. This method
is currently under review at a leading ML conference.

Achieving effective learning with limited labeled data is a pivotal challenge in ML. Recent advancements
in contrastive learning and self-supervised learning have shown efficacy in deriving useful data representa-
tions for various applications, such as image classification and object detection. In Section 3, we present a
novel self-supervised learning technique for image segmentation, which significantly reduces training time
by a factor of 144. This efficiency is achieved by integrating a contrastive loss objective with a confidence
network that optimally selects positive and negative examples. This work has been presented at the 6th
Northern Lights Deep Learning Conference and published in a Level-1 journal in Norway.

The growing memory requirements of modern deep learning (DL) methods necessitate innovative strate-
gies to reduce computational resources. One prevalent approach is quantizing neural networks, which in-
volves training with reduced-precision weights and activation maps. In Section 4, we propose an advanced
quantization technique that decreases memory consumption during training by 15%. This improvement
is achieved through a novel variance minimization strategy combined with block-wise quantization, val-
idated across multiple graph ML tasks. This work has been accepted and presented at the 2024 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP).

The methodologies detailed in this deliverable contribute substantially to the field of Sustainable ML by
addressing critical resource constraints in the training cycle. These approaches not only enhance training
efficiency but also reduce the environmental impact of ML model development. Each method has been
rigorously evaluated and disseminated through reputable conferences and publications, underscoring their
significance and potential for broader application in the ML community.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 3

D3.2 - Resource utilization aware ML framework

Contents

Executive Summary 3

Contents 4

1 Introduction 5

2 Dataset Compression with Guarantees on Robustness 6
2.1 Introduction to dataset compression and robustness . 6
2.2 Experiments . 6

2.2.1 Dataset compression in large compression budget regime 7
2.2.2 Dataset compression in small compression budget regime 9

3 Efficient Self-Supervision for Computer Vision 9
3.1 Introduction . 10
3.2 Method . 11

3.2.1 Notation . 11
3.2.2 Confidence Network . 11
3.2.3 Entropy-based Patch Sampler . 12
3.2.4 Similarity Measures . 13
3.2.5 Contrastive Loss . 13

3.3 Data & Experiments . 13
3.3.1 Data . 13
3.3.2 Experimental Set-up . 14

3.4 Results . 14
3.5 Discussions & Conclusions . 16

4 Activation Compression of Graph Neural Networks using Block-wise Quantization
with Improved Variance Minimization 17
4.1 Notations and Background . 17
4.2 Methods . 19

4.2.1 Block-wise Quantization of Activation maps . 19
4.2.2 Improved Variance Minimization . 19

4.3 Experiments and Results . 21

5 Conclusion 23

References 24

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 4

D3.2 - Resource utilization aware ML framework

1 Introduction

Dataset Curation Model Selection Model Training Model Deployment

Deep Learning Model Development Lifecycle

Figure 1: Overview of a typical deep learning model development lifecycle.

In this deliverable, which is related to Task 3.2 about Resource aware training cycle modeling we focus
on the resource costs incurred during the training part of the machine learning (ML) model development
cycle. We present three methods that achieve a significant improvement in training efficiency of training
ML models in terms of number of training examples required, number of labels required and memory
consumption. Each of these factors further have an impact on the compute, energy consumption, and
the carbon footprint of training these models.

Data as resource: Dataset Condensation (DC) is a method that generates a smaller, synthetic dataset
from a larger one. The synthetic dataset retains the essential information of the original dataset, enabling
AI models to achieve performance levels comparable to those trained on the full dataset but with a limited
data budget. Our first contribution, presented in section 2, uses finite coverings to condense datasets.
It provides adversarial robustness guarantees and shows how to achieve a desired trade-off between
performance, efficiency and robustness of machine learning models.

Labels as resource: Learning task specific representations with limited labelled data is an important but
challenging goal of machine learning. Recent advancements in contrastive learning and self-supervised
learning have shown promising results in obtaining discriminative representations of the data which
can be useful for downstream applications such as image classification, object detection and speech
recognition. In section 3 we present a new method for self-supervised learning for image segmentation
tasks that reduces training time by a factor of 144. This drastic reduction in training time is due to
the combination of a contrastive loss objective with a confidence network that generates optimal sets of
positive and negative examples.

Memory as resource: The increase in memory consumption in recent classes of deep learning meth-
ods necessitates the use of more computational resources. A common approach to reducing resource
consumption of DL methods is to explore different efficiency strategies such as training neural networks
with quantized weights or quantized activation maps. In section 4 we propose an improved quantization
method that is able to reduce memory consumption during training by 15%. This is made possible by
the introduction of a new variance minimization technique combined with block-wise quantization. We
evaluated our method on a number of graph machine learning tasks.

The method from section 2 is currently under review at a top ML conference, the method from section 3
has been accepted and presented at the 6th Northern Lights Deep Learning Conference (with proceedings

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 5

D3.2 - Resource utilization aware ML framework

in a Level-1 publication in Norway) and the work from section 4 has been accepted and presented at the
2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

2 Dataset Compression with Guarantees on Robustness

2.1 Introduction to dataset compression and robustness

This part of the project report is centered around the study that evaluates the effectiveness of adversarial
training with compressed datasets. Dataset Condensation (DC) is a method that generates a smaller,
synthetic dataset from a larger one. The synthetic dataset retains the essential information of the original
dataset, enabling AI models to achieve performance levels comparable to those trained on the full dataset
but with a limited data budget.

While DC methods have been successful in achieving high test performance with a limited data budget,
they have not directly addressed the question of adversarial robustness. Adversarial robustness refers to
the ability of an AI model to withstand adversarial attacks, where inputs to the model are intentionally
modified to cause the model to make mistakes. This study investigates the impact of adversarial training
with compressed datasets on adversarial robustness.

We propose a novel method based on Minimum Finite Covering (MFC) to improve both dataset compres-
sion efficiency and adversarial robustness. Unlike DC methods, which focus solely on retaining essential
information for high test performance, MFC aims to cover the robust frontier of the dataset. This means
it seeks to find a balance between minimizing the maximum possible loss (robustness) and minimizing
the size of the dataset (efficiency).

Empirical evaluation on multiple datasets and neural networks shows that the proposed MFC method can
achieve a better robustness and performance trade-off compared to relevant baseline DC methods. This
work could contribute significantly towards reducing data usage in developing AI models while ensuring
guarantees on their robustness, addressing both efficiency and security concerns inherent in AI model
training.

In conclusion, this study reveals an unaddressed aspect of adversarial robustness in models trained with
compressed datasets. It proposes a novel method that improves both dataset compression efficiency and
adversarial robustness, providing a new direction for future research in this area. The results demonstrate
the potential of this method in developing robust AI models with limited data, contributing to the broader
goal of efficient and secure AI model training.

By reducing the amount of data required to train robust AI models, it can decrease the computational
resources needed, leading to lower energy consumption. This is particularly important given the grow-
ing concerns about the environmental impact of large-scale ML. Furthermore, by ensuring adversarial
robustness, it can also contribute to the long-term reliability and trustworthiness of AI systems, which
are crucial for sustainable ML practices.

We envision the results from this deliverable will be input to the SustainML framework, where the
users can indicate the data budget they can afford which will then be translated into picking the most
representative data points. Further, the proposed method provides intuitive visualizations of the chosen
data points (see Figure 2) which can then be useful in the design of WP5.

For details of the method we refer to the original manuscript [1].

2.2 Experiments

In this section, we provide empirical evidence supporting the trade-off between robustness and accu-
racy for compressed dataset, as previously discussed. Our experiments are conducted on the following

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 6

D3.2 - Resource utilization aware ML framework

(a) η = 0.7, k = 1 (b) η = 0.5, k = 3 (c) η = 0.1, k = 37 (d) η = 0.05, k = 127

Figure 2: Visualization of the minimal finite covering with fixed radius η and the corresponding minimal
k.

datasets: MNIST, CIFAR10, CIFAR100, SVHN, TinyImageNet. We explore three DC methods: distri-
bution matching (DM) [2], gradient matching (GM) [3], trajectory matching (TM) [4]; various coreset
methods: minimal coreset (MCS, ours) of fixed size, gradient-based methods Craig [5] and GradM
[6], submodularity based methods with graph cut and facility location functions (SubMod) [7]; and
baselines: original full dataset (Raw), random coreset selection (Rand).

For all datasets, we focus on MCS w.r.t. ℓ2-norm, and perform adversarial training over them for both
ℓ∞- and ℓ2- norms. This is because real image data are distributed very closely to the boundary of
ℓ∞-balls, resulting in similar ℓ∞-distances between data points within the same class. All the MCS are
obtained using the existing MILP solver in GUROBI1. We use PGD-ℓ∞ and PGD-ℓ2 attack to perform
adversarial training and compute the robust accuracy in Section 2.2.1, and use AutoAttack [8] instead for
robustness evaluation in Section 2.2.2. Following the common setting in the robustness literature [9], we
set the adversarial perturbation to ε∞ = 0.1 for MNIST dataset, ε∞ = 8/255 for CIFAR10, CIFAR100,
SVHN datasets, and ε∞ = 4/255 for TinyImageNet dataset, for ℓ∞-norm. For ℓ2-norm, in order to keep

the volume of ℓ∞-ball and ℓ2-ball be similar, we set ε2 =
√

2n
πeε∞, where n is the (flattened) dimension

of input images. We use SGD optimizer in Pytorch with momentum 0.9 and weight decay 5× 10−4, and
all the experiments are run with 3 repeats using an NVIDIA A100 40GB GPU.

2.2.1 Dataset compression in large compression budget regime

In this section, we mainly consider DM from [2] as the baseline DC method due to the considerable com-
putational costs associated with obtaining the compressed datasets from other DC methods involving
bi-level optimizations; particularly when scaling up the size, such as with k = 500. We choose the com-
putationally cheaper DM method, as the baseline which also shows competitive performance compared
to other DC methods [10]. For each compressed dataset, we consider a multilayer perceptron (MLP) for
MNIST dataset, and convolutional neural networks (ConvNet) for CIFAR10 dataset. Specifically, the
MLP architecture consists of two hidden layers, each comprising 128 neurons. The ConvNet architecture
includes 3 blocks, each containing 128 filters of size 3× 3, followed by instance norm [11], ReLU activa-
tion and average pooling layers. We perform generalized adversarial training over the MCS, and classical
adversarial training over other compressed dataset.For convenience of comparison, we consider k-MCS
for both MNIST and CIFAR10 dataset with k = [50, 100, 200, 300, 400, 500].

Figure 3 shows the test, ℓ∞- and ℓ2- robust accuracy of models obtained by standard, ℓ∞- and ℓ2-
adversarial training over the original MNIST and compressed dataset. Notice that for Rand and MCS,

1https://www.gurobi.com/

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 7

https://www.gurobi.com/

D3.2 - Resource utilization aware ML framework

Figure 3: Performance of standard and robust models trained with different compressed datasets from
MNIST. The figures from left to right are standard training, ℓ∞-adversarial training and ℓ2-adversarial
training. The blue, orange and green lines stand for MCS, Rand, and DM respectively. The solid,
dashed and dotted lines stand for test, ℓ∞ and ℓ2 robust accuracy respectively. In the horizontal axis,
“full” means the original dataset for MCS and Rand, and size 5000 for DM.

Figure 4: Performance of standard and robust models trained over different compressed dataset from
CIFAR10. The figures from left to right are standard training, ℓ∞-adversarial training and ℓ2-adversarial
training. The blue, orange and green lines stand for MCS, Rand, and DM respectively. The solid,
dashed and dotted lines stand for test, ℓ∞ and ℓ2 robust accuracy respectively. In the horizontal axis,
“full” means the original dataset for MCS and Rand, and size 4000 for DM.

the coresets becomes exactly the original dataset if the size equals N . However, even for size N , method
DM is still different from the original dataset. We compute DM with size 5000 for MNIST dataset. We
see that, when applying standard training, all models show similar performance in terms of test accuracy
and robust accuracy. However, adversarial training over DM does not seem to be more effective, while
Rand and MCS have large improvement in robustness. Even if the size of DM increases to 5000, the
robust accuracy after adversarial training is still much lower than when using the original dataset. DC
methods violate the underlying distribution of the original data.

Figure 4 shows exactly the same behavior for CIFAR10 dataset. Due to memory issue, we only have access
to DM with size 4000. As the size of compressed dataset increases, the robust accuracy of both MCS
and Rand are both increasing. However, the robustness of DM does not seem to improve. Especially if
we increase the size k of DM to 4000, the test accuracy of ℓ∞-robustly trained model slightly outperforms
the original CIFAR10 data (68.86% v.s. 64.59%), whereas the robust score of the former is much smaller
than the latter (12.98% v.s. 36.21%), which is actually at the same level of compression size 50.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 8

D3.2 - Resource utilization aware ML framework

2.2.2 Dataset compression in small compression budget regime

In this section, we fix the compression budget of all methods to 50 and extend the experiments to include
additional DC methods (DM,GM, andTM) and larger datasets (MNIST, CIFAR10, CIFAR100, SVHN,
and TinyImageNet). For all the cases, we use ResNet18 [12] for both standard and adversarial training,
applying AutoAttack with APGD-CE and APGD-DLR to test the l∞-robustness of each model. The
learning rate and number of epochs are fixed at 0.01 and 20, respectively, and experiments are repeated
for three runs.

Table 3 summarizes the standard and robust scores of models trained on different compressed datasets.
We also compare three coreset methods (Craig, GradM, and SubMod). We observe similar trends in
test and robust performance as noted in the previous section. The three accuracy-oriented compression
methods (DM, GM, TM) demonstrate relatively good test performance but are less effective for ad-
versarial training. For example, on the MNIST dataset, while the DM, GM, and TM methods exhibit
excellent test performance (standard scores of 96.70%, 96.54%, and 95.93%, respectively, versus 96.42%
for MCS), their robust performance is inferior to that of MCS (91.20%, 83.68%, and 82.84%, respec-
tively, versus 92.83%). Similarly, for the SVHN dataset, which contains digit images from 0 to 9 but with
a much larger size, the robust performance of these DC methods is significantly worse than that of MCS
(4.21%, 0.35%, and 1.19%, respectively, versus 13.74%). These experiments provide extensive evidence
that DC methods tend to overfit to test performance, while our MCS method and other coreset methods,
such as random selection, show more balanced behavior in terms of both accuracy and robustness.

Table 1: Downstream performance of models trained over compressed dataset of MNIST, CIFAR10,
CIFAR100, SVHN, and TinyImageNet. We consider coreset methods Rand, MCS, Craig, GradM,
SubMod, and compression methods DM, GM, TM for fixed size 50. All robust scores are computed
by AutoAttack with APGD-CE and APGD-DLR.

dataset score Rand MCS (ours) Craig GradM SubMod DM GM TM

MNIST
std 95.15±0.14 96.42±0.21 87.02±0.81 91.24±0.44 82.22±0.02 96.70±0.09 96.54±0.15 95.93±0.36
rob 92.50±0.37 92.83±0.07 72.45±1.11 86.46±0.37 75.40±0.21 91.20±0.27 83.68±0.74 82.84±1.73

CIFAR10
std 32.29±0.76 24.88±3.12 29.24±2.79 27.53±0.47 38.21±0.91 32.59±2.49 30.67±2.10 30.62±3.03
rob 8.79±1.05 5.26±0.16 9.01±1.98 5.83±1.70 9.14±0.26 2.68±0.30 0.73±0.21 0.87±0.19

CIFAR100
std 20.24±0.54 13.71±1.05 17.46±2.12 19.78±0.35 22.89±0.20 16.00±0.95 8.61±0.88 24.45±0.14
rob 6.59±0.23 4.84±0.58 4.70±3.22 5.24±0.53 7.35±0.63 3.52± 0.65 0.99±0.30 1.09±0.10

SVHN
std 65.05±5.61 66.61±5.73 57.37±1.04 36.00±1.18 53.48±3.86 62.23±13.59 51.68± 13.86 47.08±10.63
rob 9.36±0.58 13.74±2.20 19.59±0.00 6.69±1.23 18.62±1.66 4.21±0.43 0.35±0.13 1.19±0.31

Tiny
std 18.23±0.41 14.34±0.20

– – –
12.01±0.96 2.15±0.24 14.54±1.61

rob 0.17±0.04 4.48±1.57 1.16±0.24 0.03±0.00 3.22±0.66

3 Efficient Self-Supervision for Computer Vision

Learning discriminative representations of unlabelled data is a challenging task. Contrastive self-supervised
learning provides a framework to learn meaningful representations using learned notions of similarity
measures from simple pretext tasks. In this work, we propose a simple and efficient framework for self-
supervised image segmentation using contrastive learning on image patches, without using explicit pretext
tasks or any further labeled fine-tuning. A fully convolutional neural network (FCNN) is trained in a
self-supervised manner to discern features in the input images and obtain confidence maps which capture
the network’s belief about the objects belonging to the same class. Positive- and negative- patches are
sampled based on the average entropy in the confidence maps for contrastive learning. Convergence is
assumed when the information separation between the positive patches is small, and the positive-negative
pairs is large. We evaluate this method for the task of segmenting nuclei from multiple histopathology
datasets, and show comparable performance with relevant self-supervised and supervised methods. The
proposed model only consists of a simple FCNN with 10.8k parameters and requires about 5 minutes

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 9

D3.2 - Resource utilization aware ML framework

Figure 5: Overview of the training evolution of the proposed contrastive self-supervised learning model.
At each of the five illustrated epochs, predicted confidence map (from which segmentation masks are
derived by thresholding) for a single validation set image is shown, along with the patches sampled as
positive (white squares) and negative (red squares).

to converge on the high resolution microscopy datasets, which is orders of magnitude smaller than the
relevant self-supervised methods to attain similar performance.2

3.1 Introduction

Learning task specific representations without any – or with limited – labelled data continues to be
an elusive goal of machine learning. Recent advancements in contrastive learning and self-supervised
learning have shown promising results in obtaining discriminative representations of the data which can
be useful for downstream applications such as image classification [13], object detection [14] and speech
recognition [15]. Contrastive self-supervised learning (CSL) has been successfully used as a form of pre-
training to reduce the dependence on labeled data for more complex tasks such as image segmentation [16].
Most self-supervised methods rely on pretext tasks for training them [17, 18]. Designing relevant pretext
tasks can be challenging and even if a useful pretext task is obtained they may not easily generalise across
datasets [19].

In this work, we present a self-supervised learning framework that contrastively learns an object detection
model for segmenting nuclei in histopathology images. The model comprises a fully convolutional neural
network (FCNN) that predicts one confidence map per output channel, which captures the confidence
of each pixel belonging to a particular object class. The FCNN is contrastively trained using smaller
positive- and negative patches stochastically sampled from the images. Patches within a training batch
are sampled from an entropy based distribution, where the entropy is based on the patch-level confidence
scores. The intuition behind the entropy-based sampling is to obtain positive patches that contain similar
information and negative patches that contain contrasting information, with respect to features that can
discriminate between objects of different classes. Through iterative training we are able to improve the
information separation between the positive- and negative patches, resulting in an object detection model
which can be used for segmentation.

We use a simple FCNN with 10.8k tunable parameters which converges in about 5 minutes on a stand-
alone GPU workstation. Experimental evaluation on two histopathology datasets [20, 21] show that our
efficient, contrastive self-supervised learning method obtains performance comparable to relevant super-
vised and self-supervised baseline methods, using only a fraction of the compute time and resources. An
illustration of how the confidence map evolves during the training process is illustrated in Figure 5.

2Source code: https://github.com/nickeopti/bach-contrastive-segmentation

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 10

https://github.com/nickeopti/bach-contrastive-segmentation

D3.2 - Resource utilization aware ML framework

Patch
Sampler

Fully Conv.
NN

fθ(•)

Contrastive
Loss
L (•)

Positive &
Negative
patches

CI

I: Input Image C: Confidence Map

C ᐧ I Similarity
Measure

s(•)

Figure 6: High level overview of the proposed patch-based contrastive self-supervision method. The input
color image, I, is input to the fully convolutional neural network, fθ(·), to obtain a pixel level foreground
confidence map, C. The confidence map is used by the patch sampler which returns locations of positive
and negative patches. The patches are then obtained from the attended image, C · I, to obtain the inter-
and intra- class similarity measures, s(·). A contrastive loss, L(·), is computed based on these similarities
which is then back-propagated through the entire pipeline. The trainable weights, θ, are tuned until the
confidence map, C, corresponds to segmentation masks of interest.

3.2 Method

Segmentation is fundamentally the task of partitioning an image into areas of interest and a background
class. Assuming that the areas of interest within the same class are similar in some feature space according
to a similarity measure, we present our contrastive learning framework that results in an unsupervised
segmentation model. A high level overview of the proposed framework is illustrated in Figure 6.

3.2.1 Notation

Consider a batch of M images, with the i’th image represented as the pair (Ui, Ii), where Ui ⊂ Nd is
a finite set representing the d-dimensional pixel coordinates and Ii is a function Ii : Ui → [0, 1]λ, with
λ ∈ N denoting the number of colours/channels, mapping such pixel coordinates into their respective
values.

Next, we introduce the notation for denoting the patch locations sampled from the image i as the tuple
(R, i), where R ⊂ Ui is the set of pixel coordinates of the image patch. Note that the power set P(Ui)
denotes the set of all possible smaller patches that can be sampled from image i. Denoting the set of
all such patch tuples across images X , we consider the subset S ⊂ X of regular (square) and spatially
connected patches in this work.

The proposed framework uses a confidence network (Section 3.2.2), fθ, parameterised by θ which for a
given input image (Ui, Ii) computes the confidence map, Ci, i.e., fθ : (Ui, Ii) ∈ [0, 1]λ 7→ Ci ∈ [0, 1]K .
The k’th coordinate in Ck

i (u) indicates the belief, or confidence, that the pixel u ∈ Ui in image i belongs
to class k, for k = 1, . . . ,K, with K ≥ 1.

The contrasting of patches depends on a similarity measure (Section 3.2.4), s : X × X 7→ R, which
compares the similarity of two patches. This similarity computation relies on (Ii, Ij) and (Ci, Cj), where
i and j are the images from which the two compared patches originate from.

3.2.2 Confidence Network

The aim of the confidence network, fθ, is to learn to detect objects in images without any pixel-level
supervision, such that areas with high confidence of the k’th class actually belong to a specific type of
object in the images. Conversely, objects detected with high confidence of the j’th class, when k ̸= j,
should belong to a different class. The confidence network, fθ, can be any trainable model which given
an input image produces a set of confidence maps, describing the confidence that each pixel of the image

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 11

D3.2 - Resource utilization aware ML framework

belongs to a corresponding class. This, for instance, can be implemented as a fully convolutional neural
network (FCNN), with multi-class support i.e., with multiple output channels such that each channel
would correspond to a different output class.

The confidence network is trained to discriminate between objects that could belong to different classes by
contrasting patches of images against each other. Obtaining meaningful positive- and negative patches
for the contrastive learning is the foundational problem in this framework. We next describe a novel
approach to mine for such contrastive patches for self-supervision of the confidence network.

3.2.3 Entropy-based Patch Sampler

For each output class k = 1, . . . ,K, patches believed to contain (a part of) an object belonging to a
specific class are treated as positive patches, whereas patches believed to not contain (a part of) an object
of that class are treated as negative patches. Appropriate sampling of such positive- and negative patches
is of vital importance, as the optimisation of the confidence network, fθ, is performed according to the
contrastive loss computed based on those patches. Improved object detection shall ideally correlate with
positive and negative sampled patches being more distinct. Effectively, the appropriate sampling of
patches becomes a form of pretext/auxiliary task for training the confidence network, fθ.

Assume a set of candidate patches, S ⊂ X . For each patch (R, i) ∈ S with |R| pixels and for each class
k, the average patch confidence is computed as:

Ak(R, i) :=
1

|R|
∑
u∈R

Ck
i (u) ∈ [0, 1]. (1)

Notice that the higher the average patch confidence, the stronger the belief that the patch contains the
type of object belonging to class k.

Recall that Ci 7→ [0, 1]K , that is, for each class, k = 1, . . . ,K, a Ck
i (u) value closer to 1 indicates a higher

probability of u belonging to the k’th class. Likewise, a value closer to 0 indicates that u likely does
not belong the k’th class, whereas values in between indicate varying degrees of (un)certainty in either
direction. Using this intuition about the confidence maps, we model a Bernoulli distributed random
variable, X(u), with confidence value as its parameter, denoted as X(u) ∼ Bern(Ck

i (u)). Using this, we
can now define the average patch entropy as

Bk(R, i) :=
1

|R|
∑
u∈R

H(X(u)), where (2)

H(X) = −
∑

x∈{0,1}

P(X(u) = x) log2 P(X(u) = x) (3)

= −Ck
i (u) log2 C

k
i (u)− (1− Ck

i (u)) log2(1− Ck
i (u)), (4)

which is the entropy of the Bernoulli distributed random variable X(u). The motivation for this choice
of Bernoulli random variable is so that good choices of positive- and negative patches, according to the
contrastive loss, would correlate with higher certainty from the confidence network. Therefore sampling
a set Wk ⊂ S of n patches according to the unnormalised distribution

1−Bk(R, i)

for each class k ensures a stochastic correlation between the confidence map and the appropriateness of
patch sampling. Finally, partitioning of these Wk into sets of positive samples, Pk and negative samples
Nk is performed according to

[(R, i) ∈ Pk] ∼ Bern(Ak(R, i))

for each patch (R, i) ∈ Wk, such that patches with high confidence of belonging to class k are likely to
be selected as positive for class k.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 12

D3.2 - Resource utilization aware ML framework

3.2.4 Similarity Measures

Ideally, the similarity measure, s : X × X → R, should yield higher values when two input patches are
more similar. In this work, for any two patches (R1, i), (R2, j) ∈ S, the similarity measure performs the
comparison – not on the input image but – on the image scaled by the corresponding confidence map,
given by the following pixel-wise product: Fi(u) := Ii(u)Ci(u), u ∈ R1, and Fj(v) := Ij(v)Cj(v), v ∈ R2.
We employ two pixel-level similarity measures: mean squared error (MSE) and cross-entropy (CE), and
treat them as a model hyperparameter and report the best performing measures for each of the datasets.
Backpropagation: The scaling of the input image with the confidence map also serves the purpose of
connecting the gradients between the sampling step and the confidence network for backpropagating the
contrastive loss to optimise the confidence network.

3.2.5 Contrastive Loss

Within a channel k of the confidence map, we seek to maximise similarity between positive patches
while minimising the similarity between positive- and negative- patches. This is facilitated using the
intra-channel contrastive loss

Lintra = −
K∑

k=1

1

|Pk|2
∑

r,p∈P
k

log
exp(s(r, p))∑

n∈N
k

exp(s(r, n))
. (5)

This contrastive loss, inspired by SimCLR [13], rewards fθ for learning to detect a single feature in the
images for each class in the confidence map, when patches are sampled appropriately. However, this lacks
any mechanism for enforcing the individual classes to learn distinct features. In a multi-class scenario,
each of the classes shall ideally detect different features. This is achieved by introducing an inter-channel
contrastive loss

Linter = −
K∑

k=1

1

|Pk|2
∑

r,p
k

∈P
k

exp(s(r, pk))∑K
i=1,[i ̸=k]

∑
p∈P

i

exp(s(r, p))
. (6)

Finally, the combined loss is defined as

L = Lintra + Linter. (7)

3.3 Data & Experiments

3.3.1 Data

As the proposed CSL framework is trained exclusively using unlabelled images, without exposure to the
labels during training, we can also use the labels from the training set for validation of the segmentation
performance. That is, we train the weights of the FCNN without using any labels but can employ the
labels for model selection.
MoNuSeg: This dataset [20]3 from MICCAI 2018 contains 37 training images at 1000 × 1000 pixels
resolution, obtained at 40× magnification, as well as 14 testing images at the same resolution. Dense
annotations of all nuclei in all images are provided.
CoNSeP: This dataset [21]4 contains 27 training images at 1000 × 1000 pixels resolution, obtained at
40× magnification, as well as 14 similar testing images. There are dense annotations of all nuclei in all
images.

3MoNuSeg data is available at https://monuseg.grand-challenge.org/Data/

4CoNSeP data is available at https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 13

https://monuseg.grand-challenge.org/Data/
https://warwick.ac.uk/fac/cross_fac/tia/data/hovernet/

D3.2 - Resource utilization aware ML framework

3.3.2 Experimental Set-up

Baseline Methods: The simplest supervised baseline method is to obtain the optimal intensity threshold
using the training images. The images are converted to grey-scale and an optimal threshold to obtain
binary segmentation is obtained. Additionally, a CNN of the same architecture as the confidence network,
fθ, is used as a supervised baseline. And finally, these results are also compared to the self-supervised
method that uses scale prediction as a pretext [18], which is referred to as the Scale Pretext method. All
baselines are evaluated on both mentioned datasets.

Patches 5 10 15 20 25
Dice 0.6643 0.7071 0.6682 0.6986 0.6059

Patch Size 202 302 502 802 1202

Dice 0.5063 0.6562 0.6980 0.6606 0.6871

Table 2: The median validation Dice score over three runs on MoNuSeg is used to select number of
patches and patch sizes (shown in boldface).

Model Hyperparameters: The default configuration uses a confidence network, fθ, closely inspired
by [18]. Entropy based stochastic sampling described in Section 3.2.3 and K = 4 classes are used. The
patch size of 50× 50 pixels and 10 patches from each image in a batch are chosen based on experiments
on the MoNuSeg dataset, as reported in Table 2.

The proposed framework was trained for a maximum of 300 epochs. To limit RAM usage, the input
images are cropped into 300 × 300 pixels, where the location is selected uniformly at random as to add
some data variance. No other pre-processing nor data augmentation is applied. Batch size of 10 is used
for all experiments.
Implementation: The proposed framework is implemented in PyTorch [22] using PyTorch Lightning
[23], with support to be trained on GPUs; all training has been performed on a system with an NVIDIA
GeForce RTX 3060 and intel-i7 processor with 32GB memory.
Experiments: With the objective of comparing the segmentation performance of the proposed CSL
framework with the baselines, we perform experiments on each of the datasets described in Section 3.3.1.

Our CSL framework is initialised with the hyperparameters described in Section 3.3.2 on each of the
datasets and the weights of the confidence network are randomly initialised. A single training epoch
consists of contrasting 10 patches of size 50× 50 (see Table 2) sampled from one random crop from each
training image. At the end of each epoch, the confidence maps obtained from the confidence network are
thresholded at p = 0.5 and the segmentation performance is evaluated using the labels for the training
images by computing the Dice score. After training for 300 epochs, the model with highest validation
Dice score is selected for evaluation on the test set. These Dice scores are reported and discussed further
in Section 3.4. Simple post-processing comprising two iterations of morphological opening and closing
operations with radius 3 and 1, respectively, are performed on the thresholded segmentation masks.

The proposed CSL framework is trained 10 times with different initialisations on each dataset, in order
to illustrate and quantify its inherent variance in segmentation performance.

3.4 Results

Segmentation results: Segmentation performance of our method and the baselines are reported in
Table 3 on both the datasets. The first two rows show the performance of two supervised methods and

5Most likely this is a large under-estimation of the actual convergence time based on in-house implementation as the
actual run-time was not reported in [18].

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 14

D3.2 - Resource utilization aware ML framework

Methods MoNuSeg CoNSeP # Par. Time

Int. Thresh. 0.5823 0.5700 1 <1m
CNN 0.7666 0.7375 10.8k ≈ 10m

Scale Pretext 0.6209 0.5139 21.7M > 12h5

Ours: Max.
Mean ± s.d
80 perc.

0.6797 0.6266
0.62±0.05 0.52±0.06 10.8k ≈ 5m
0.6469 0.5448

Table 3: Dice scores on test sets of MoNuSeg and CoNSeP datasets for the different methods along with
maximum, mean+sd and 80’th percentile scores for our method. Optimal intensity threshold method
(Int. Thresh.), supervised CNN baseline, self-supervised method using scale prediction pretext task (Scale
Pretext) and the proposed CSL framework. The number of trainable parameters and convergence time
per method are also reported.

Figure 7: Four test set images from the MoNuSeg dataset. The rightmost column is colour-coded, where
blue indicates correct segmentation, green indicates false negatives, and red indicates false positives. The
predictions are obtained from the confidence map by a 0.5 threshold.

the third row shows the self-supervised Scale Pretext baseline method [18]. We ran ten random repeats
of our model for each dataset configuration and report the mean, maximum and the 80’th percentile Dice
score over these runs. Dice score for the Scale Pretext method is obtained from the paper [18]. In all
cases, the supervised CNN method performs better than the self-supervised class of methods, which is to
be expected, as no further fine-tuning of these methods with labels is performed.

MoNuSeg: Our method outperforms the supervised optimal threshold method when trained on the
MoNuSeg dataset using MSE-similarity. Qualitative results on four randomly selected test set images
from the MoNuSeg dataset for the model trained on WSI data are shown in Figure 7.

CoNSeP: A similar performance trend is observed on the CoNSeP dataset, where we notice the mean
Dice score of our method with the CE similarity measure performs better than the Scale Pretext method.
However, the intensity thresholding method performs better than all self-supervised methods.

The number of parameters of our method (10.8k) is several orders of magnitude fewer than Scale Pretext
method (21M), and our method takes only a fraction of time until convergence (5m) compared to theirs
(>12h) as shown in Table 3. This fast convergence time has implications in overcoming the strong

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 15

D3.2 - Resource utilization aware ML framework

influence of the confidence maps obtained at initialisation (epoch-0) which can result in convergence to
poor solutions. While some runs result in poor performance – dragging the mean down – most runs
yield good performance. We capture this as the 80’th percentile performance over multiple runs, which is
better than the mean performance. Thus running the model several times (which is still fast) will likely
result in good performing solutions. As a standard practice, we therefore recommend running multiple
repeats of our model on any dataset.

3.5 Discussions & Conclusions

Confidence maps to Segmentation masks: The efficient CSL framework presented in this work
outputs multiple confidence maps corresponding to objects believed to belong to the same class. Going
from these confidence maps to the segmentation masks by definition requires expert input. In this work,
we alleviate this by using the labels for model selection/validation. For other unlabelled datasets, some
other form of validation would be required to align the concept of a biomedical image foreground to that
of a confidence map of a self-supervised framework.

Self-supervised segmentation performance: The main baseline we compared our method to is the
self-supervised Scale Pretext method [18]. The results of this method is not significantly different from
ours. This is even with specific preprocessing (stain-normalisation) and elaborate post-processing followed
in [18], which are altogether left out in our work. Further, compared to the Scale Pretext method ours is
significantly simpler, both in terms of the model complexity, the elaborate regularisation of their objective
function and training time (5m versus 12h).

Predictions in different channels: Having multiple output classes increases the likelihood of the
desired class to actually be segmented, at the cost of some computational resources. However, even with
K = 4 classes, there are runs where none of the classes correspond particularly well with the desired
nuclei segmentation. Hence, a few of the runs will turn out useless, requiring training the framework
multiple times, and choosing a good instance based on validation performance. Training our method
multiple times is recommended, as it could benefit from the variance in segmentation performance. This
is captured in Table 3, where the best score is often significantly better than the mean score.

Limitations: The main limitation in the proposed framework coincides with its simplicity — there are
no constraints encouraging the model to actually segment the desired objects of interest, resulting only
in small performance improvements. Further, obtaining segmentation masks of interest in one of the
confidence maps is not guaranteed; so as a standard practice we suggest running the model multiple
times. This might not end up being a major limitation, after all, as many model runs do converge to
reasonable solutions as captured by the 80-percentile scores in Table 3.

Finally, we assume that the similarity measure plays an important role in model performance. We
experimented with a few of these measures. However, thorough investigations of more refined similarity
measures and their influence on multi-class segmentation remains as future work.

Conclusions: We presented a self-supervised framework for segmenting nuclei from histopathology data,
which uses patch-based contrastive learning. We introduced a novel technique to mine for positive- and
negative patches for contrasting based on the average entropy of the confidence maps. This approach
encourages the trainable confidence network to discern objects of different classes. The resulting method
with only 10.8k trainable parameters takes under 5 min. to converge, yielding useful segmentation masks.
We foresee interesting research directions for this work that can make it better suited for diverse image
data. This method can be extended to other domains of computer vision. We chose histopathology data
as it is an extremely challenging task, and multiple open datasets are available.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 16

D3.2 - Resource utilization aware ML framework

4 Activation Compression of Graph Neural Networks using Block-
wise Quantization with Improved Variance Minimization

Graph neural networks (GNNs) are a class of deep learning (DL) models most useful when dealing with
graph structured data [24, 25]. They have shown widespread relevance in a range of diverse applica-
tions [26, 27, 28, 29]. GNNs are known to scale poorly with the number of nodes in the graph data
primarily due to the memory requirements for storing the adjacency matrices and intermediate activa-
tion maps [30]. The increase in memory consumption necessitates use of more computational resources.
This is, unfortunately, in line with the growing resource consumption of recent classes of deep learning
methods [31, 32]. A common approach to reducing resource consumption of DL methods is to explore
different efficiency strategies [33, 34] such as training neural networks with quantized weights [35] or
quantized activation maps [36].

The main focus of efficiency improvements in GNNs has been either by operating on subgraphs to use
smaller adjacency matrices [37] or to store compressed node embeddings or activation maps for comput-
ing gradients [38]. In this work, we are interested in the latter, specifically following the method intro-
duced in [38] that proposed extreme activation compression (EXACT) using a combination of stochastic
rounding-based quantization and random projections.

In this work we make two contributions, starting from EXACT, that further improve the memory con-
sumption and yield training runtime speedup. Firstly, we introduce block-wise quantization [39] of the
activation maps which quantizes large groups of tensors instead of individual tensors with support down
to INT2 precision. Secondly, the quantization variance estimation in EXACT is performed using the
assumption that the activation maps are uniformly distributed. We show that the activation maps do
not follow a uniform distribution but instead follow a type of clipped normal distribution with empirical
evidence. Using this insight, we present an improvement to the variance minimization strategy when
performing the quantization of activation maps. Experimental evaluation on multiple graph datasets
shows a consistent reduction in memory consumption and speedup in training runtime compared to
EXACT.

4.1 Notations and Background

We describe a graph with N nodes as G = (X,A), with dense node feature matrix X ∈ RN×F containing
F -dimensional features for each of the N nodes, and sparse adjacency matrix A ∈ {0, 1}N×N with the
relations between each of the nodes. Specifically Ai,j = 1 if there is an edge between node i and j and
Ai,j = 0 otherwise.

The GNN from [25] with L layers can be compactly written as the recursion:

H(ℓ+1) = σ
(
ÂH(ℓ)Θ(ℓ)

)
(8)

where the symmetric normalized adjacency matrix is Â = D̃−1/2AD̃−1/2 with D̃ as the degree matrix of
A+ I, H(0) := X, the trainable parameters at layer-ℓ are Θ(ℓ) and a suitable non-linearity σ(·).

Since the activation maps, specifically the intermediate results
(
H(ℓ)Θ(ℓ)

)
and the node embedding matrix

H(ℓ), are the biggest users of memory, EXACT [38] focused on reducing the size of the activation maps
from FLOAT32 to lower precision using two methods:

Stochastic Rounding: For a given node i its embedding vector h
(ℓ)
i is quantized and stored using b-bit

integers as:

h
(ℓ)
iINT

= Quant
(
h
(ℓ)
i

)
=

⌊
h
(ℓ)
i − Z

(ℓ)
i

r
(ℓ)
i

B

⌉
=

⌊
h̄
⌉

(9)

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 17

D3.2 - Resource utilization aware ML framework

Figure 8: Demonstration of stochastic rounding for b = 2 i.e., 2b = 4 quantization bins for 128 points
uniformly sampled datapoints. Here the sampled points can be quantized to any of the four levels. The
closer the color of the sample is to the color of the vertical bar, the larger the probability that it quantizes
to the said vertical bar. Quantization bins when using uniform bin widths (left) and when using non-linear
bin widths when performing variance optimization (right) introduced in Sec 4.2.2 is visualized..

where B = 2b − 1, Z
(ℓ)
i = min(h

(ℓ)
i) is the zero-point, r

(ℓ)
i = max(h

(ℓ)
i) − min(h

(ℓ)
i) is the range for

h
(ℓ)
i , h̄ is the normalized activation map, and ⌊·⌉ is the stochastic rounding (SR) operation [40]. SR

rounds a number to its nearest integer with a probability inversely proportional to the distance from the
quantization boundaries.6 It can be shown that SR is an unbiased operator as the rounding probabilities
are dependent on distance of

⌊
h̄
⌉
to the nearest integers [41].7 Figure 8-A) illustrates SR with uniform

bin widths.

The inverse process of dequantization is defined as:

ĥ
(ℓ)
i = Dequant

(
h
(ℓ)
iINT

)
= r

(ℓ)
i h

(ℓ)
iINT

/B + Z
(ℓ)
i (10)

which linearly transforms the quantized values from [0, B] back to their original ranges. Note that we

still have some information-loss, since h
(ℓ)
iINT is only an estimate of h

(ℓ)
i .8

Random Projection: Another way of minimizing memory footprint of activation maps is to perform
dimensionality reduction on them. This is done via random projection in EXACT as:

h
(ℓ)
iproj

= RP(h
(ℓ)
i) = h

(ℓ)
i R (11)

6For any scalar activation map, h, SR is given by:

⌊h⌉ =

{
⌊h⌋+ δ,with probability (h− ⌊h⌋)/δ
⌊h⌋,with probability 1− (h− ⌊h⌋)/δ

where δ is the uniform bin width, ⌊·⌋ is the floor operator.

7Consider, the expectation according to the definition of SR:

E[⌊h⌉] = (⌊h⌋+ δ) · (h− ⌊h⌋) /δ + ⌊h⌋ · (1− ((h− ⌊h⌋) /δ))
= h− ⌊h⌋+ ⌊h⌋ = h.

This proves that SR with uniform bin widths is unbiased.

8Note that quantization followed by dequantization is unbiased due to stochastic rounding, i.e., E[ĥ(ℓ)
i] =

E[Dequant(Quant(h
(ℓ)
i))] = h

(ℓ)
i .

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 18

D3.2 - Resource utilization aware ML framework

where R ∈ RD×R with R < D is the normalized Rademacher random matrix [42] that satisfies E[RR⊤] =
I.

The random projected node embeddings are inversely transformed by

ĥ
(ℓ)
i = IRP

(
h
(ℓ)
iproj

)
= h

(ℓ)
iproj

RT . (12)

The matrix containing all projected and recovered activation maps are defined as H
(ℓ)
proj and Ĥ(ℓ), respec-

tively.9

EXACT method combines random projection and quantization to obtain compounding reductions in

memory consumption. Specifically, node embeddings are compressed as h̃
(ℓ)
i = Quant

(
RP

(
h
(ℓ)
i

))
,

are stored in memory during the forward pass, and during the backward pass they are recovered as

ĥ
(ℓ)
i = IRP

(
Dequant

(
h̃
(ℓ)
i

))
.

4.2 Methods

Quantizing activation maps of GNNs reduces the memory consumption when training GNNs but does
introduce an additional overhead in the computation time due to the quantization/dequantization steps.
We propose to perform large block-wise quantization [39] in place of quantizing individual tensors in
order to recover some of the slowdown and to further reduce the memory consumption.

4.2.1 Block-wise Quantization of Activation maps

The quantization in Eq. (8) is performed over each node embedding, which is a tensor h
(ℓ)
i ∈ RD resulting

in a sequence of b-bit integers i.e., h
(ℓ)
iINT

∈ {0, . . . , B − 1}D. Instead of quantizing each node embedding,
block-wise quantization takes a larger chunk of tensors and performs the quantization on them which
further reduces the memory footprint and yields speedup. Block-wise quantization has been shown to be
effective in reducing the memory footprint as demonstrated in [39] where optimizer states are block-wise
quantized to 8-bits (INT8)[43].

Consider the complete node embedding matrix after random projection, H
(ℓ)
proj ∈ RN×R. To perform

block-wise quantization first the node embedding matrix is reshaped into a stack of tensor blocks of
length G:

H
(ℓ)
block ∈ R

N·R

G

×G := reshape
(
H

(ℓ)
proj, G

)
. (13)

The sequence of random projection and quantization as described in Section 4.1 are performed on each

block in h
(ℓ)
iblock

∈ RG ∀ i = [1, . . . , (N · R/G)]. Performing quantization using larger blocks of tensors is
shown to improve training stability, as block-wise quantization localizes the effects of outliers to within
its own block [39]. In this work, we experiment different block sizes to study the impact on memory
consumption and test performance.

4.2.2 Improved Variance Minimization

Starting from the observation that h
(ℓ)
iINT

is an unbiased estimate, we want to find the quantization bound-

aries such that its variance, Var(h
(ℓ)
iINT

), is minimized to further reduce the effect of quantization. To
achieve this we need three components: 1) distribution of activation maps, 2) variance as a function of

9Also note that the RP and IRP operations are also unbiased. i.e., E[Ĥ(ℓ)] = E[IRP(RP)(H(ℓ))] = H(ℓ).

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 19

D3.2 - Resource utilization aware ML framework

Figure 9: The observed normalized activations in a GNN model on the OGB-Arxiv data (left) compared to
different modelled distributions: uniform (center), and clipped normal (right). Notice the clipped normal
is able to model the observed distribution more accurately, including the edges where the spikes are caused
due to clipping at the boundaries.

the activation maps, and 3) minimization of the expected variance as a function of quantization bound-
aries.

In the EXACT [38] paper, the quantization boundaries are always set to integer values i.e., bins are of
constant width. This stems from the assumption that the underlying distribution of activation maps
are uniformly distributed [38] (Figure 9-center). In this work we show, on multiple datasets, that the
activation maps are more accurately distributed as a variation of the normal distribution which we call
the clipped normal.

Letting B = 2b − 1 define the number of quantization bins, and Φ−1 the Probability Point Function, we
describe the clipped normal distribution as

CN [1/D](µ, σ) = min (max (0,N (µ, σ)) , B) , (14)

where µ = B/2 and σ = −µ/Φ−1(1/D).

The similarity between the observed and the modelled activation maps are visualized in Figure 9, where
we can see that the clipped normal distribution is better at approximating the activation maps compared
to the uniform distribution.

We next expand SR to use irregular bin widths. Consider the normalized activation, h ∈ h̄ within the
bin-i, stochastic rounding when using irregular bin widths, δi ∀ i = [1, . . . , B], is given by:

⌊h⌉ =

{
⌈h⌉,with probability (h− ⌊h⌋)/δi
⌊h⌋,with probability 1− ((h− ⌊h⌋)/δi).

(15)

Following the variance estimation from [41]10 and assuming a normalized activation h, we calculate its
SR variance as

Var(⌊h⌉) =
i=B∑
i=1

(
δi(h− αi−1)− (h− αi−1)

2
)
, (16)

where δi is the width of the bin containing h, and αi is the starting position of the bin.

Assuming INT2 quantization i.e., with B = 3 bins, the expected variance of the SR operation under the

10Check Eq. 4.4 onwards in [41] for detailed derivation.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 20

D3.2 - Resource utilization aware ML framework

Figure 10: Variance of SR for INT2 quantization with different quantization boundaries [α, β] based on
Eq. (16). When [α = 1.0, β = 2.0] uniform bin width is obtained.

clipped normal distribution is obtained from Eq. (16) and Eq. (14):

E[Var(⌊h⌉)] =
∫ α

0

(α · h− h2)CN (h;µ, σ) dh

+

∫ β

α

(
(β − α)(h− α)− (h− α)2

)
CN (h;µ, σ) dh

+

∫ B

β

(
(B − β)(h− β)− (h− β)2

)
CN (h;µ, σ) dh (17)

where [α, β] are the tunable edges of the central bin (see Figure 8-B). Given this expected variance in
Eq. (17), we optimize the boundaries [α, β] that minimize the variance due to SR. This can be done using
standard numerical solvers implemented in Python.

4.3 Experiments and Results

Data: Experiments are performed on two large-scale graph benchmark datasets for inductive learning
tasks. The open graph benchmark (OGB) Arxiv dataset [44] consisting of graph with ≈ 170k nodes and
> 1M edges, and the Flickr dataset [45] consisting of ≈ 90k nodes and ≈ 900k edges.
Experimental Setup: The GNNs used in our experiments use the popular GraphSAGE architecture [37]
implemented in Pytorch [46], which is also the baseline model with no activation compression i.e., operat-
ing in FP32 precision. EXACT is used in INT2 precision and D/R = 8 as the second baseline which uses
extreme compression. We experiment our proposed compression methods in INT2 precision and different
group sizes G/R = [2, 4, 8, 16, 32, 64] to demonstrate the influence of block-wise quantization. To keep
the dimensionality proportion between the GNN layers, we scale the dimensionality of each layer equally
when performing grouping, hence the block size is presented using the G/R. The influence of variance
minimization (VM) on the test performance is also reported.
Results: Performance of the baseline methods and different configurations of the method presented in
this work for two datasets are reported in Table 4. The most astonishing trend is that there is no notice-
able difference in test performance on both datasets, across all models, even with extreme quantization
(INT2) and any of the reported block sizes. With our proposed method there is a further improvement
in memory consumption compared with EXACT by about 15% (97% with baseline FP32) and about 8%
(97% with baseline FP32) for the Arxiv and Flickr datasets, respectively, when using the largest block
size (G/R=64). We also gain a small speedup in training time per epoch: 5% for Arxiv, and 2.5% for
Flickr, compared to EXACT.
Use of clipped normal distribution in Eq. (14) to model the activation maps is better than uniform dis-
tribution. This is captured using the Jensen-Shannon divergence measure, reported in Table 5 where
we observe that for all layers, in both datasets, the distance to the observed distribution is smaller for
clipped normal distribution.
Variance minimization does indeed decrease the variance induced by SR when performed with EXACT
(Table 5), but shows no change in performance (Table 4).

Based on the experiments and the results in Table 4, we notice that block-wise quantization of activation

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 21

D3.2 - Resource utilization aware ML framework

Dataset Quant. G/R Accuracy ↑ S (e/s) ↑ M(MB) ↓

Arxiv

FP32 [37] – 71.95 ± 0.16 13.07 786.22
INT2 [38] – 71.16 ± 0.21 10.03 30.47

INT2

2 71.16 ± 0.34 10.23 27.89
4 71.17 ± 0.22 10.46 26.60
8 71.21 ± 0.39 10.54 25.95
16 71.01 ± 0.19 10.55 25.72
32 70.87 ± 0.29 10.54 25.60
64 71.28 ± 0.25 10.54 25.56

INT2+VM – 71.20 ± 0.19 9.16 30.47

Flickr

FP32[37] – 51.81 ± 0.16 17.95 546.92
INT2[38] – 51.65 ± 0.23 11.26 20.39

INT2

2 51.58 ± 0.24 11.38 19.54
4 51.57 ± 0.29 11.50 19.12
8 51.60 ± 0.25 11.55 18.95
16 51.65 ± 0.21 11.54 18.86
32 51.61 ± 0.19 11.53 18.84
64 51.72 ± 0.24 11.53 18.84

INT2+VM – 51.71 ± 0.18 10.78 20.39

Table 4: Performance of block-wise quantization with D/R = 8, different quantization precision (FP32,
INT2), block size (G), and with variance minimization (VM). We report the following metrics on the
Arxiv [44] and Flickr [45] datasets: accuracy (%), speed (S) reported as epochs/second and memory (M)
consumption in MB. Standard deviations of test accuracy is computed over 10 runs.

Dataset Layer R U CN
[1/D]

Var. Reduction (%)

Arxiv
layer 1 16 0.0495 0.0213 3.17
layer 2 16 0.0446 0.0016 2.09
layer 3 16 0.0451 0.0041 2.19

Flickr
layer 1 63 0.0674 0.0017 6.14
layer 2 32 0.0504 0.0033 4.37

Table 5: Jensen-Shannon divergence measure for Uniform and Clipped Normal distributions compared
to the normalized activations h̄ at each layer of the GNN for Arxiv and Flickr datasets. In all cases we
see a smaller divergence measure between the clipped normal and the empiricial distribution of activation
maps.

maps on top of random projection and SR yields a further reduction in memory consumption and a small
speedup in runtime. Increasing block size does not hamper the test performance but progressively yields
further reduction in memory consumption.

Activation maps in GNNs are not uniformly distributed; we demonstrated this using empirical visu-
alizations in Figure 9. We quantified this using the clipped normal distribution which had a smaller
Jensen-Shannon divergence to the observed distribution, as seen in Table 5. This implies that using
uniform quantization bin width could be sub-optimal. We presented an extension to stochastic rounding
that accounts for variable bin widths in Eq. (15). The influence on quantization variance using Eq. (16)
visualized in Figure 10 clearly demonstrates the value of using non-uniform bin widths.

Limitations: The compute overhead even with the proposed modifications do not fully recover the
reduction in speedup compared to the baseline i.e., when using FP32. While the variance estimation im-
provement introduced by modelling the activation maps with clipped normal distribution better models
the activation maps, minimizing the variance of SR under this distribution does not yield a noticeable im-
provement in test performance. This could simply be due to the fact that the overall drop in performance
even with block-wise quantization is small, and there is no room for further improvement. The software
implementations of the quantization and variance minimization strategies are not highly optimized and

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 22

D3.2 - Resource utilization aware ML framework

there is room for further fine-tuning.

5 Conclusion

This deliverable documents three unique methods within the domain of efficient machine learning, carried
out in relation to T3.2 within the SustainML project. Each method has been designed to enhance the
efficiency of the training process, but they do so in different ways, addressing different aspects of the
process.

The first method focuses on the volume of training data, the second method addresses the number of
labels and the third method focuses on the memory required for training.

Each of these methods represents a significant improvement over existing methods. They have been
designed to be easily integrated into existing machine learning frameworks, making them highly practical
and usable. Together, these three methods represent a significant step forward in the quest for more
efficient machine learning.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 23

D3.2 - Resource utilization aware ML framework

References

[1] Tong Chen and Raghavendra Selvan. “Is Adversarial Training with Compressed Datasets Effective?”
In: arXiv preprint arXiv:2402.05675 (2024).

[2] Bo Zhao and Hakan Bilen. “Dataset Condensation with Distribution Matching”. In: 2023 IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV). 2023, pp. 6503–6512.

[3] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. “Dataset Condensation with Gradient Match-
ing”. In: International Conference on Learning Representations. 2021.

[4] George Cazenavette et al. “Dataset Distillation by Matching Training Trajectories”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022.

[5] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. “Coresets for Data-efficient Training of Ma-
chine Learning Models”. In: Proceedings of the 37th International Conference on Machine Learning.
2020, pp. 6950–6960.

[6] Krishnateja Killamsetty et al. “GRAD-MATCH: Gradient Matching based Data Subset Selection
for Efficient Deep Model Training”. In: Proceedings of the 38th International Conference on Machine
Learning. 2021, pp. 5464–5474.

[7] Rishabh Iyer et al. “Submodular combinatorial information measures with applications in machine
learning”. In: Proceedings of the 32nd International Conference on Algorithmic Learning Theory.
PMLR, 16–19 Mar 2021.

[8] Francesco Croce and Matthias Hein. “Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks”. In: Proceedings of the 37th International Conference on Machine
Learning. 2020, pp. 2206–2216.

[9] Francesco Croce et al. “RobustBench: a standardized adversarial robustness benchmark”. In: arXiv
preprint arXiv:2010.09670 (2020).

[10] Justin Cui et al. “DC-BENCH: Dataset Condensation Benchmark”. In: arXiv preprint arXiv:2207.09639
(2022).

[11] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. “Instance normalization: The missing
ingredient for fast stylization”. In: arXiv preprint arXiv:1607.08022 (2016).

[12] Kaiming He et al. “Deep Residual Learning for Image Recognition”. In: 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2016, pp. 770–778.

[13] Ting Chen et al. “A simple framework for contrastive learning of visual representations”. In: Inter-
national conference on machine learning. PMLR. 2020, pp. 1597–1607.

[14] Jiahao Xie et al. “Unsupervised Object-Level Representation Learning from Scene Images”. In:
Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer et al. 2021. url: https:
//openreview.net/forum?id=X2K8KVEaAXG.

[15] Alexei Baevski et al. “wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Repre-
sentations”. In: Advances in Neural Information Processing Systems. Ed. by H. Larochelle et al.
Vol. 33. Curran Associates, Inc., 2020, pp. 12449–12460. url: https://proceedings.neurips.
cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf.

[16] Xinpeng Xie et al. “Instance-aware self-supervised learning for nuclei segmentation”. In: Interna-
tional conference on medical image computing and computer-assisted intervention. Springer. 2020,
pp. 341–350.

[17] Mehdi Noroozi and Paolo Favaro. “Unsupervised learning of visual representations by solving jigsaw
puzzles”. In: European conference on computer vision. Springer. 2016, pp. 69–84.

[18] Mihir Sahasrabudhe et al. “Self-supervised nuclei segmentation in histopathological images using
attention”. In: International Conference on Medical Image Computing and Computer-Assisted In-
tervention. Springer. 2020, pp. 393–402.

[19] Ishan Misra and Laurens van der Maaten. “Self-supervised learning of pretext-invariant representa-
tions”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2020, pp. 6707–6717.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 24

https://openreview.net/forum?id=X2K8KVEaAXG
https://openreview.net/forum?id=X2K8KVEaAXG
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/92d1e1eb1cd6f9fba3227870bb6d7f07-Paper.pdf

D3.2 - Resource utilization aware ML framework

[20] Neeraj Kumar et al. “A Dataset and a Technique for Generalized Nuclear Segmentation for Com-
putational Pathology”. In: IEEE Transactions on Medical Imaging 36.7 (2017), pp. 1550–1560. doi:
10.1109/TMI.2017.2677499.

[21] Simon Graham et al. “Hover-net: Simultaneous segmentation and classification of nuclei in multi-
tissue histology images”. In: Medical Image Analysis 58 (2019), p. 101563.

[22] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32. Ed. by H. Wallach et al. Curran Associates,
Inc., 2019, pp. 8024–8035.

[23] William Falcon and The PyTorch Lightning team. PyTorch Lightning. Mar. 2019. doi: 10.5281/
zenodo.3828935. url: https://www.pytorchlightning.ai.

[24] Franco Scarselli et al. “The graph neural network model”. In: IEEE transactions on Neural Networks
20 (2008).

[25] Thomas N. Kipf and Max Welling. “Semi-Supervised Classification with Graph Convolutional Net-
works”. In: International Conference on Learning Representations (ICLR). 2017.

[26] Tien Huu Do et al. “Matrix completion with variational graph autoencoders: Application in hyper-
local air quality inference”. In: International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2019.

[27] Zhongyuan Zhao et al. “Distributed scheduling using graph neural networks”. In: International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021.

[28] Panagiotis Tzirakis, Anurag Kumar, and Jacob Donley. “Multi-channel speech enhancement using
graph neural networks”. In: International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2021.

[29] Juan Cervino, Luana Ruiz, and Alejandro Ribeiro. “Training Graph Neural Networks on Growing
Stochastic Graphs”. In: IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2023.

[30] Keyu Duan et al. “A comprehensive study on large-scale graph training: Benchmarking and re-
thinking”. In: Advances in Neural Information Processing Systems (NeurIPS) (2022).

[31] Lasse F. Wolff Anthony, Benjamin Kanding, and Raghavendra Selvan. Carbontracker: Tracking and
Predicting the Carbon Footprint of Training Deep Learning Models. ICML Workshop on Challenges
in Deploying and monitoring Machine Learning Systems. arXiv:2007.03051. July 2020.

[32] Jaime Sevilla et al. “Compute trends across three eras of machine learning”. In: arXiv preprint
arXiv:2202.05924 (2022).

[33] Brian R Bartoldson, Bhavya Kailkhura, and Davis Blalock. “Compute-Efficient Deep Learning:
Algorithmic Trends and Opportunities”. In: Journal of Machine Learning Research 24 (2023),
pp. 1–77.

[34] Dustin Wright et al. “Efficiency is Not Enough: A Critical Perspective of Environmentally Sustain-
able AI”. In: Arxiv (2023).

[35] Itay Hubara et al. “Binarized neural networks”. In: Advances in Neural Information Processing
Systems (NeurIPS) (2016).

[36] Jianfei Chen et al. “Actnn: Reducing training memory footprint via 2-bit activation compressed
training”. In: International Conference on Machine Learning (ICML). 2021.

[37] Will Hamilton, Zhitao Ying, and Jure Leskovec. “Inductive representation learning on large graphs”.
In: Advances in neural information processing systems (NeurIPS) (2017).

[38] Zirui Liu et al. “EXACT: Scalable Graph Neural Networks Training via Extreme Activation Com-
pression”. In: International Conference on Learning Representations (ICLR). 2022.

[39] Tim Dettmers et al. “8-bit Optimizers via Block-wise Quantization”. In: International Conference
on Learning Representations (ICLR). 2022.

[40] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. “Binaryconnect: Training deep neu-
ral networks with binary weights during propagations”. In: Advances in neural information pro-
cessing systems (NeurIPS) (2015).

[41] Lu Xia et al. Improved stochastic rounding. Arxiv. 2020.

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 25

https://doi.org/10.1109/TMI.2017.2677499
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://www.pytorchlightning.ai

D3.2 - Resource utilization aware ML framework

[42] Dimitris Achlioptas. “Database-Friendly Random Projections”. In: Symposium on Principles of
Database Systems (PODS). 2001.

[43] Tim Dettmers. “8-bit approximations for parallelism in deep learning”. In: International Conference
on Learning Representations (ICLR). 2016.

[44] Weihua Hu et al. “Open graph benchmark: Datasets for machine learning on graphs”. In: Advances
in Neural Information Processing Systems (NeurIPS) (2020).

[45] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric.
ICLR Workshop on Representation Learning on Graphs and Manifolds (RLGM). 2019.

[46] Adam Paszke et al. “Pytorch: An imperative style, high-performance deep learning library”. In:
Advances in Neural Information Processing Systems (NeurIPS) (2019).

© 2023 SustainML | HORIZON-CL4-2021-HUMAN-01 | 101070408 26

	Executive Summary
	Contents
	Introduction
	Dataset Compression with Guarantees on Robustness
	Introduction to dataset compression and robustness
	Experiments
	Dataset compression in large compression budget regime
	Dataset compression in small compression budget regime

	Efficient Self-Supervision for Computer Vision
	Introduction
	Method
	Notation
	Confidence Network
	Entropy-based Patch Sampler
	Similarity Measures
	Contrastive Loss

	Data & Experiments
	Data
	Experimental Set-up

	Results
	Discussions & Conclusions

	Activation Compression of Graph Neural Networks using Block-wise Quantization with Improved Variance Minimization
	Notations and Background
	Methods
	Block-wise Quantization of Activation maps
	Improved Variance Minimization

	Experiments and Results

	Conclusion
	References

