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Executive summary

SustainML project aims to develop a design framework and an associated toolkit, so-called SustainML,
that will foster energy efficiency throughout the whole life-cycle of Machine Learning (ML) applications:
from the design and exploration phase that includes exploratory iterations of training, testing and opti-
mizing different system versions through the final training of the production systems (which often involves
huge amounts of data, computation and epochs) and (where appropriate) continuous online re-training
during deployment for the inference process. The framework will optimize the ML solutions based on the
application tasks, across levels from hardware to model architecture. It will also collect both previously
scattered efficiency-oriented research, as well as novel Green-AI methods. Artificial Intelligence (AI) de-
velopers from all experience levels can make use of the framework through its emphasis on human-centric
interactive transparent design and functional knowledge cores, instead of the common blackbox and fully
automated optimization approaches.

This report corresponds to Deliverable D2.1 - Hardware accelerator architecture report of the SustainML
project. This deliverable covers the detailed analysis of suitable cross-layer optimizations used to design
low-power and energy-efficient hardware accelerator architectures.
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Acronyms

1D-CNN One-dimensional Convolutional Neural Network.
AI Artificial Intelligence.
ASIC Application-Specific Integrated Circuit.
BRAM Block RAM.
CLB Configurable Logic Block.
CNN Convolutional Neural Network.
CPU Central Processing Unit.
DARTS Differentiable ARchiTecture Search.
DMA Direct Memory Access.
DNN Deep Neural Network.
DNNU Deep Neural Network Unit.
DRAM Dynamic Random Access Memory.
DSP Digital Signal Processing.
FF Flip-Flops.
FIFO First In First Out memory.
FP32 floating-point 32-bit.
FP8 floating-point 8-bit.
FPGA Field-Programmable Gate Array.
GPU Graphics Processing Unit.
HALF Holistic Auto machine Learning for FPGAs.
HDL Hardware Description Language.
HLS High-level Synthesis.
IP Intellectual Property.
LUT LookUp Table.
ML Machine Learning.
NAS Neural Architecture Search.
NN Neural Network.
P&R place and route.
PL Programmable Logic.
PS Processing System.
RL Reinforcement Learning.
RNN Recurrent Neural Network.
TPU Tensor Processing Unit.
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1 Introduction

In the following, we are focusing on the efficient hardware implementation of Deep Neural Networks
(DNNs) as one of the most challenging classes of machine learning algorithms. Efficient implementation
of DNNs in hardware requires rigorous exploration of the design space on different layers of abstraction,
including algorithmic, architectural, and platform layers as depicted in Fig. 1. First, the application
formulates a problem by a dataset and requirements in terms of constraints and objectives, e.g., minimum
accuracy and maximum latency. At the highest level of the design hierarchy is the algorithm, which is the
most abstract description of the data and control flow in the form of a DNN topology. The architecture
layer maps the topology to a hardware design, which is implemented on the platform. At the lowest level
is the platform, which describes the hardware and its physical properties.

Figure 1: Design hierarchy and multi-layer design space.

All design layers are defined by a large number of parameters, which have a mutual effect on other lay-
ers. Top-down and bottom-up interdependencies express these effects. The former ones are provided by
topology and hardware design. The latter ones are facilitated by hardware awareness, namely platform
awareness and hardware architecture awareness, which model how design choices influence the physical
implementation on the platform layer. According to our methodology proposed in [1], the architectural
layer is represented by highly parametrizable architecture templates, which are used to instantiate var-
ious DNN topologies in hardware. The correspondence between the DNN topologies and architectural
templates allows linking topology choices on the algorithm layer to effects on the platform layer. This
way, we can model hardware characteristics, e.g., latency and power consumption, by formulas derived
from the architecture templates expressed in terms of topology hyperparameters to include hardware
awareness to the algorithmic layer. Neural Architecture Search (NAS) is a technique for automating the
design of neural networks that can be on par with or outperform state-of-the-art hand-designed models.
In the proposed methodology, we use NAS on the algorithmic layer and augment it with the hardware-
awareness models. The NAS performs a cross-layer optimization since it has all information starting from
the application layer down to the platform layer.

In summary, the large design space is explored by the NAS guided by optimization objectives target-
ing both application and hardware requirements, which, however, raises a question of which cross-layer
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optimizations applied on one layer of design abstraction can be efficiently facilitated on another layer
enabling more efficient hardware implementation resulting in lower power consumption and higher energy
efficiency.

2 Optimizations

In the following section, we explore various cross-layer optimizations, which enable more efficient hardware
implementation resulting in lower power consumption and higher energy efficiency.

2.1 Hardware-Aware Deep Neural Networks

DNNs have to be designed to achieve the required accuracy and fulfill hardware criteria, especially on
edge/embedded devices because they have small memory, constrained computing capabilities, memory
bandwidth, power, and energy budgets.

Figure 2: Energy costs for various operations (45nm 0.9V). Based on [2].

Figure 2 compares operations considering their energy costs. It shows that arithmetic operations are
”cheap” while memory accesses are ”expensive” and have a cost that is a function of the size of the
memory being accessed. The relative energy cost should be used as the main guidance for designing
DNNs. The hardware-aware DNNs have to be small to fit into on-chip memory ideally, or to mitigate any
communication with the external memory, they have to use fewer operations and leverage low-precision
data types.

In summary, DNNs have to be not only accurate but also hardware-aware, meaning that they have to be
designed considering a trade-off between accuracy and implementation cost.

There is a lot of ongoing research on developing networks with lower computation costs and storage
consumption without impairing classification accuracy. Comparing different architectures in Fig. 3, it
can be seen that some DNNs have a smaller model and require to perform fewer operations while achieving
higher classification accuracy. For example, an architecture, like MobileNetV2 (14MB) [3] performs about
as well as VGG-16 (552MB) model [4], despite being nearly 40 times smaller.

The efficient models became possible due to multiple macro- and micro-architectural improvements of the
models. The types of layers and their arrangement are referred to as macro-architecture. The efficient
micro-architectural approaches are: a) very deep models are replaced with fewer layers, but with more
channels, b) activation feature maps are kept smaller, c) models are enhanced with skip and residual
connections that have been proven to improve accuracy, d) standard convolutions are replaced with
depth-wise separable ones. The micro-architecture also defines methods applied to individual layers, like
replacing big convolutional kernels with smaller ones and fusing different layers.
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Figure 3: Top-1 accuracy on the ImageNet challenge versus number of parameters and amount of opera-
tions required for a single forward pass. The size of the blobs is proportional to the number of network
parameters. Source [5].

Further techniques have been proposed to alleviate the computing and storage challenges. Among the
most common ones are distillation [6], pruning [7, 8, 9], and quantization or a combination thereof [10].
All of them are based on the typically inherent redundancy contained within the Neural Networks (NNs),
meaning that the number of parameters and precision of operations can be significantly reduced without
affecting accuracy.

Knowledge distillation uses a larger “teacher” model to train a smaller “student” model to produce similar
predictions while using fewer parameters. Polino et al. [11] were able to achieve a 46× reduction in size
for ResNet models trained on CIFAR10 with only 10% loss of accuracy, and a 2× reduction in the size
of ImageNet with only a 2% loss of accuracy using quantization and distillation. The combination of
pruning, quantization and Hoffman coding allowed Han et al. [10] to reduce the storage required by
AlexNet by 35×, and VGG-16 by 49×, without loss of accuracy in both cases.

The goal of the pruning is to optimize the model by eliminating less significant weights and neurons with-
out affecting accuracy as depicted in Fig. 4. The most common weight pruning leverages the redundancy
in the number of weights in the network. We can eliminate some connections that result in a sparse
network. If you could rank the weights in the network according to how much they contribute, you could
then remove the low-ranking weights from the network, resulting in a smaller and faster network without
impairing classification accuracy.

The idea of quantization is to represent each weight in a network with only a few bits instead of a 32-bit
floating-point number that is the most typical for general-purpose platforms, like Central Processing
Units (CPUs) and Graphics Processing Units (GPUs). Weight quantization leverages the redundancy
in the number of bit representations of weights. Quantization can drastically reduce the model size,
which is crucial to fit the model into small on-chip memory. If we further quantize the activations,
efficient hardware implementations become possible. As a result, cumbersome float operations can be
replaced by cheaper procedures, which make inference faster and more energy-efficient. The quantization
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Figure 4: Effects of pruning in a fully connected Neural Network.

can be applied during training or after training. The latter one is called the post-training quantization
approach. It does not involve training the quantized model, nor it requires the availability of the full
dataset. However, post-training quantization is less efficient than quantization-aware training that allows
for achieving higher classification accuracy using fewer bits [12].

Figure 5: Quantization of the weights.

The resulting model after knowledge distillation does not require special treatment during inference, unlike
after pruning and quantization. Pruning results in fewer multiplications and reduced storage consumption
because of fewer parameters; however, at the cost of irregular parallelism, more sophisticated hardware,
and more complicated sparse model storage representation. Quantization saves memory, and at the same
time, reduces computation cost because of low-precision multiplication without the drawbacks of pruning.
However, not all computing platforms support arbitrary precision and sparse matrix operations equally
well.

In summary, pruning and quantization are the primary model compression techniques, but they require
special treatment that raises the question of selecting an implementation platform that can fully benefit
from them.

2.2 Implementation Platforms

Most of the computing today, including computing at the edge, happens on general-purpose programmable
processors or CPUs. They became so widespread due to the ease of programming that hinges on executing
a sequence of simple instructions. However, the energy overhead associated with fetching and decoding
an instruction can be up to four orders of magnitude higher than the energy required to perform a simple
logical or arithmetic operation [13] as illustrated in Fig. 6. To provide the required performance and
energy efficiency, we must consider alternative architectures with lower overhead, such as domain-specific
accelerators. They are hardware computing engines that are specialized for a particular domain. In the
following, we will focus on the advantages and disadvantages of the computing platforms with respect to
effectiveness for DNNs.
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Figure 6: Instruction energy breakdown (45nm 0.9V). Based on [2].

Comparing different platforms we can refer to Fig. 7. From left to right in the figure, we have different
ways to implement an algorithm: CPU, GPU, Field-Programmable Gate Array (FPGA) and Application-
Specific Integrated Circuits (ASICs). We can see that these options present a trade-off between flexibility
and efficiency (performance/W).

Figure 7: Flexibility vs. Efficiency for different computing platforms. Source Microsoft.

CPU as the most general-purpose computing platform, is incredibly flexible and capable of executing a
great variety of singular tasks at a very high speed. GPU is less flexible than a CPU and requires a bit
more specialized programming. However, modern GPUs contain thousands of cores capable of a very high
degree of parallelism for regular and independent (do not rely on each other) tasks. Pruning results in
the sparse matrices exhibiting irregular parallelism that is less efficient than operations on dense matrices
when implemented on CPUs and especially GPUs. Further, general-purpose computing platforms support
only a limited set of precisions: double, single, and recently half-precision and integer operations down
to 8 bits. Meaning, intermediate precisions cannot fully benefit from CPUs and GPUs.

The domain-specific accelerators can be built on FPGA and ASIC. FPGAs are less flexible than GPUs
and CPUs, and require even more specialized programming skills, but are highly efficient and can be
reprogrammed with new code as requirements change. ASICs are the most efficient, they are also inex-
pensive to manufacture at scale, but the development process is cost-prohibitive and lengthy. The major
disadvantage is that the functionality implemented in silicon cannot be changed after manufacturing.
Pruning and quantization are advantageous for all platforms including CPUs and GPUs [14] but only
ASICs and FPGAs can fully benefit from them. The main reasons why FPGAs and ASICs are highly
efficient in comparison to general-purpose computing platforms are:

Optimized memory. Customized memory hierarchy allows us to achieve very high on-chip memory
bandwidth and to utilize off-chip memory bandwidth more efficiently. For example, when weights and
biases are stored in many small local memories, they achieve very high memory bandwidth with low la-
tency and energy consumption. Off-chip memory access patterns can be optimized to utilize the available
bandwidth more efficiently.

Data specialization. Support for custom precision data types increases the effective size and bandwidth
of local memory, allows the external memory bandwidth to be utilized more efficiently, and enables
efficient arithmetic and logic operations as most operations do not need 32-bit precision which is common
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on general-purpose computing platforms.

Massive Parallelism. Multiple levels of parallelism can be implemented on domain-specific accelerators
without an overhead. For example, parallelism can be applied on a level of neurons and at the same time
on a dot-product level without a synchronization overhead. Furthermore, FPGA and ASIC support
bit-level parallelism meaning fine-grained parallelism with down to 1 bit granularity. The degree of
parallelism is only practically limited by the available resources.

Reduced overhead. Specialized hardware mitigates the overhead of instruction interpretation. Custom
pipelined datapath allows implementation of complex dataflow and control flow efficiently. For example,
recurrent dataflow of Recurrent Neural Networks (RNNs) and pruning can be efficiently implemented
without an overhead associated with instruction fetch and decode, branch prediction, and speculation
used by modern out-of-order processors.

Algorithm-architecture co-design. For general-purpose platforms, the hardware architecture is fixed.
In contrast, the algorithm and the hardware architecture can be jointly optimized to meet certain re-
quirements when implemented on FPGA and ASIC.

Using these advantages, one can use FPGAs to provide ad hoc solutions to facilitate computationally in-
tensive, time-critical tasks at low-power consumption in a reprogrammable manner, unlike ASICs. DNNs
relying on trained network parameters can require reprogramming the weights as a result machine learn-
ing benefits from the reconfigurability of FPGAs. For example, Microsoft’s machine learning architecture,
called Project Brainwave [15], is instantiated using FPGAs [16] achieving competitive performance with
Google’s Tensor Processing Unit (TPU) [17]. TPU is Google’s hardware approach to machine learning
implemented on an ASIC and used for many of Google’s most popular services, including Search, Street
View, Translate, and more.

Figure 8: General FPGA structure.

FPGAs are semiconductor devices that are based on a matrix of Configurable Logic Blocks (CLBs)
connected via programmable interconnects. Fig. 8 illustrates a general structure of FPGA. The CLBs
include LookUp Tables (LUTs) that can be configured to implement arbitrary combinational functions,
and Flip-Flopss (FFs) that are memory elements, which are used to implement sequential logic circuits.
The other resources on FPGA are Block RAM (BRAM) which is distributed memory in close proximity
to CLBs and Digital Signal Processing (DSP) slices to implement signal processing functions.

In summary, FPGA is a computing platform with a unique combination of programmability, development
cost, and efficiency that can fully benefit from various compression techniques. How can one use these
features to implement optimized DNNs efficiently?
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2.3 Co-design and Automation

The design of custom hardware architectures for DNNs and their implementation on FPGA is a time-
consuming process that requires much expertise in the field of deep learning, hardware design, and
implementation. To efficiently implement DNNs on a specific FPGA platform and to meet certain re-
quirements, e.g., power consumption and latency, we have to consider an enormous amount of design
parameters starting from neural topology down to hardware architecture and physical implementation.
Importantly, interdependencies between the different design layers have to be considered, making it im-
possible to find optimal solutions manually. In spite of the advantages of FPGA, very often CPUs and
GPUs are preferred over FPGAs because of the faster and easier development process. Fast and efficient
implementation of DNNs on FPGAs can be achieved by combining recent advances:

Co-design. DNN’s topologies and hardware architectures have to be co-designed by joint optimization
of performance and efficiency while maintaining accuracy. It can be achieved using an automatic search
for neural topologies, like NAS [18, 19, 20, 21]. NAS is a technique for automating the design of neural
networks that can be on par with or outperform state-of-the-art hand-designed models.

Parametrizable hardware. Deployment of libraries of parametrizable hardware components substan-
tially accelerates the hardware design and implementation. Such libraries are already adopted in industry
and research [22]. The parametrizable hardware components balance specialization and generality. A
sweet spot lies in building a library of components that accelerate a domain of applications rather than
a single application. In the context of DNNs, libraries, like [23, 22], accelerate various DNN layers rather
than particular topology. Parametrization allows supporting a wide range of parameters of different
layers.

Automated hardware design. Use of High-level Synthesis (HLS) is proved to significantly accelerate
the development process and provide results competitive to Hardware Description Languages (HDLs).
HLS is an automated design process that takes an abstract behavioral specification of a digital system
usually expressed in a high-level programming language, like C/C++, and finds a register-transfer level
structure that realizes the given behavior.

3 Methodology

As has been mentioned in the previous sections, the design space is composed of a very high number of
parameters, which makes it impossible to find optimal solutions manually.

There are many techniques for automatic exploration of the vast design space of DNNs. Among the most
successful approaches are Reinforcement Learning (RL), gradient-based, and evolutionary algorithms.
The goal of RL is to train a so-called agent to take actions that maximize a reward. In the context
of NAS, the RL-based methods usually treat the DNN hyperparameters as actions and the evaluation
criteria (e.g., accuracy) as the reward. In [24], Baker et al. used RL agent to generate new neural
topologies, while Zoph et al. in [25] used RL for training a RNN that was responsible for composing
new topologies. One of the first attempts to augment NAS with hardware-aware objectives was made by
Tan et al. in [18], who used RL-based multi-objective NAS algorithm for optimizing both accuracy and
physically measured inference latency of models on mobile phones. The RL agent was able to find models
with lower latency than hand-designed models. However, RL-based methods require training the agent
in addition to performing the actual neural search, which makes these methods very time-consuming and
less flexible with respect to changes in the search space. A gradient-based method, like Differentiable
ARchiTecture Search (DARTS) that was proposed by Liu et al. in [26], allows faster search of the
architecture using gradient descent, unlike RL based methods that use random sampling. Wu et al. in
[19] using a similar setup to [18] replaced RL agent with DARTS. They could speed up the NAS by two
orders of magnitude, meanwhile achieving even better characteristics than [18]. Evolutionary algorithms
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do not require training an agent nor a supergraph like gradient-based methods. Genetic algorithms use
biologically inspired concepts to describe DNN structure and perform a search for new architectures. Real
et al. in[27] presented an evolutionary algorithm that outruns RL based method and outperformed state-
of-the-art hand-designed models. In order to consider resource consumption of models in NAS, Elsken et
al. in [28] proposed LEMONADE algorithm for multi-objective architecture search. Using LEMONADE
in [29] Schorn et al. incorporated error resilience, energy consumption, latency, and required bandwidth
of DNNs on hardware to the NAS.

The proposed methodology is based on the evolutionary algorithm presented in [30]. The main mecha-
nisms of the evolutionary algorithm comprise mutation, evaluation, and selection. The selection strategy
used in the current NAS is based on the Bayesian sampling method used in [28]. The candidate topolo-
gies are sampled from less explored regions of the Pareto frontier. These candidates are evaluated first
on computationally ”cheap” objectives that are hardware-level objectives. They are ”cheap”, as they
do not require training a network and can be computed based on hyperparameters using a closed-form
expression. The candidates that fulfill certain hardware criteria are selected for evaluation with computa-
tionally ”expensive” objectives that are application-level objectives, e.g. accuracy. They are ”expensive”
as they require to train a network. At the end of selection and evaluation procedures, the Pareto frontier
is updated with fully evaluated topologies. These topologies are mutated in the next generation using
techniques from [28]. The hardware requirements are considered in the form of hardware awareness,
which is expressed in two ways in the NAS, namely constrained search space and optimization objectives.
First, the search space is constrained by the hardware library. The NAS only searches for DNNs that can
be constructed from the hardware library, which encompasses the types of layers and combinations of
hyperparameters, including quantization. Therefore, the NAS generates only fully hardware-compatible
solutions. Second, the NAS searches for topologies that are optimal with respect to the hardware optimiza-
tion objectives that are formulated based on the architecture templates as a function of hyperparameters
of the neural topology and hardware parameters. The output of the NAS is a network topology, trained
weights, and quantization of the weights and output activations.

4 Hardware library

To enable cross-layer optimizations, we present a flexible HLS hardware library of custom hardware
architectures, which can facilitate various DNN topologies. Earlier, we presented custom hardware archi-
tectures for standard One-dimensional Convolutional Neural Networks (1D-CNNs), depth-wise separable
1D-CNNs, and various other DNN layers and components suitable for unidimensional signal processing.
The hardware architectures are highly customizable, which allows the implementation of various neural
topologies. The hardware library is written as a collection of C/C++ template functions with HLS anno-
tations and modularity in mind to make it easily expandable by new layers. The hardware architecture
is designed to be low power and ultra-low latency. Primarily, this is achieved by keeping all weights and
intermediate results in on-chip memory since off-chip transfers consume more energy and introduce extra
latency. External memory is only used to read input data and write results, therefore reducing memory
access to the absolute minimum. Separate hardware modules dedicated to each layer are connected using
on-chip data streams in a single top-level module called Deep Neural Network Unit (DNNU) as shown
in Fig. 9. The library is based on dataflow architectures, which can be easily customized for each net-
work. The hardware modules are designed with streaming interfaces to facilitate fast design, debugging,
interoperability, and ease of integration. The top-level module is equipped with Direct Memory Access
(DMA) components that allow access to external memory independent of any processor using AXI-Master
interfaces. The architecture is fully pipelined, allowing all layers to operate concurrently and starting the
computation as soon as the inputs are ready to reduce latency and energy consumption.

In a pipelined architecture, there always exists a bottleneck stage, which determines the latency of the
entire pipeline. The latency of the bottleneck stage can be decreased by spatial parallelism, which we
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Figure 9: Deep Neural Network Unit (DNNU)

refer to as unrolling (coming from loop unrolling). The hardware library is designed with parametrizable
unrolling, which parallelizes the bottleneck stages efficiently. The parametrization allows applying coarse-
grained parallelization on a level of filters for Convolutional Neural Network (CNN) layers and neurons for
fully connected layers, and fine-grained parallelization on a level of dot-products, distinguishing kernel-
level and input-channel parallelism.

Among other platforms, we target Zynq-7000 SoC and Zynq UltraScale+ MPSoC devices. These devices
comprise the Programmable Logic (PL), which is the FPGA fabric, and the Processing System (PS),
which is a processor. The DNNU can be integrated as a module in the PL of the device with direct
connections to the PS for controlling the module as it is depicted in Fig. 10. Alternatively, the hardware
architecture can be instantiated as a module on FPGA without any processor to coordinate data transfers
to and from the design.

Figure 10: DNNU instantiation on Zynq
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5 Custom data type

One of the recent emerging trends to increase energy efficiency is to adapt the low-precision data formats
for both inference and training of DNNs. Typically, training is done using floating-point formats as they
are able to provide wide dynamic range and high precision. The main challenge of using low-bit-width
data formats such as floating-point 8-bit (FP8) data format is the limited dynamic range compared to
floating-point 32-bit (FP32). One possible solution to compensate for the range limitation of FP8 is to
shift the data format representable range to the desired location. This can be done by varying the bias
value of the floating-point equation instead of using a common bias value for all FP8 values. Our target
is to adaptively find the optimum bias value of FP8 for each given DNN model. Figure 11 shows an
example of shifting FP8 dynamic range to the DNN parameter location.
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Figure 11: Fitting the FP8 data format range to the MobileNet-V2 backward pass errors histogram. The
data points shown in this histogram exclude the sign.

There are two FP8 configurations, first with 5-bit exponent and 2-bit mantissa and another one with 4-bit
exponent and 3-bit mantissa. It is proven in the state-of-the-art that using (1,4,3) in the backward pass
is impossible. As we aim to use the same data format for forward and backward passes in this work, we
use FP8 with a 5-bit exponent. Our methodology uses statistical analysis to find the optimum bias value
for a given DNN model. Initial epochs of training are performed in FP32. The FP32 data that are read
and written to the Dynamic Random Access Memory (DRAM) are sampled by a statistical analysis unit
to identify a suitable bias value by analyzing the data distribution. Our statistical analysis unit finds the
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Table 2: Reference table for mapping median value to Bias

Median Value Bias Median Value Bias Median Value Bias

64 10 2 15 0.0625 20
32 11 1 16 . .
16 12 0.5 17 . .
8 13 0.25 18 . .
4 14 0.125 19 0.0000305175 31

Figure 12: DNN training accuracy results comparison

median of DNN parameter. Then, we find the nearest median in Table 2. This table lists the middle value
(which is equal to the median) of FP8 data format for different bias values. By this method, we find the
bias value, which shifts the FP8 dynamic range to the location with the highest coverage for a given DNN
model. After identification of a suitable bias value, DRAM write requests from the compute core are
quantized to FP8. Similarly, the read data are dequantized to FP32 before forwarding it to the core. This
enables a linear reduction of the total number of DRAM accesses since more data words can be packed in
each transaction. Figure 12 shows the accuracy results of the proposed data format against other state-
of-the-art data formats such as IEEE-754 FP32, FP16, and BFloat16. Our evaluations are conducted on
DNN models such as VGG-16, ResNet18, MobileNet-V2, and GoogleNet. Furthermore, our evaluations
consider datasets such as Cifar-100, and TinyImageNet. For all the networks, our methodology resulted
in minimal DNN training accuracy loss. The resulting accuracy reduction of the FP8 format is on
average 1% lower compared to the reference FP32 format. These results show we can reduce the energy
consumption of DNN training by utilizing our custom data format with negligible accuracy loss.

6 Framework

To facilitate fast implementation of topologies found by the NAS and mapped onto custom hardware
architectures, we implemented the Holistic Auto machine Learning for FPGAs (HALF) framework that is
comprised of two main components, which are the hardware-aware NAS and the FPGA implementation
framework as depicted in Fig. 13. The HALF framework receives as an input a dataset, a sketch of
the DNN design space, and the requirements, which can be specified in terms of application-level and
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hardware-level constraints and optimization objectives. As an output, the framework automatically
produces a hardware implementation for the selected FPGA platform that fulfills the requirements. The
sketch of the design space encompasses the types of layers, the range of hyperparameters, etc.

Figure 13: Components of the HALF framework.

The HALF significantly accelerates the deployment of DNNs on FPGAs. The automatic NAS takes days,
depending on the complexity of the underlying search space and the size of the dataset, while the manual
search can take weeks even without considering hardware awareness. Including hardware awareness into
NAS shortcuts the otherwise time-consuming manual network design and evaluation of different FPGA
implementations to identify candidates with the best trade-offs. The automatic hardware generation and
implementation take hours in contrast to a manual process that can take days or even weeks, especially
if hardware components have to be designed from scratch. The HALF framework accelerates the design
cycle significantly, it reduces the deployment time from months to days.

The first step in the framework is NAS explained previously in Section 3. The second step is the FPGA
implementation framework that comprises a hardware generator, a custom hardware library, a profiler for
activations, a software library, and a hardware-software implementation step. The hardware generator
produces a hardware architecture of the neural network using components from the hardware library
described in Section 4. In particular, it uses Xilinx Vivado HLS to generate an Intellectual Property (IP)
core from the DNN topology based on the components of the hardware library. At this point, the model
weights are integrated into the IP core because the hardware architecture uses only on-chip memory for
model storage. Additionally, it instantiates interfaces for communication with external memory and First
In First Out memory (FIFO) buffers for connecting the elements. The hardware generator also calculates
parallelization factors for each layer based on the layer’s latency, the required throughput, the available
resources, and the memory bandwidth on the target platform. While the quantization of weights and
output activations is provided by the NAS, the quantization for the internal accumulators is found by
the hardware profiler. The profiler identifies the optimal range and precision for all accumulators in the
hardware and sets the bit widths accordingly. The IP core produced by the hardware generator is used
in the hardware-software implementation step, which generates a bitstream for the FPGA configuration
and a software executable. Xilinx Vivado Design Suite project is created at the hardware implementation
step, the IP is instantiated and connected to the interfaces, logic synthesis and place and route (P&R) are
performed, and the bitstream is generated to configure the FPGA. The software, compiled for running
on the processor cores, is used to transfer input and output data to the FPGA and to control the IP
core.
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7 Summary

Efficient implementation of Deep Neural Networks (DNNs) in hardware requires rigorous exploration
of the design space on different layers of abstraction, including algorithmic, architectural, and platform
layers. At the highest level of the design hierarchy is the algorithm, which is the most abstract description
of the data and control flow in the form of a DNN topology. The architecture layer maps the topology
to a hardware design, which is implemented on the platform. At the lowest level is the platform, which
describes the hardware and its physical properties.

As the DNN topology is on the highest level of the design hierarchy, the changes applied on the topology
have potentially the highest impact on the properties of the final implementation. DNNs have to be
designed to achieve the required accuracy and fulfill hardware criteria, especially on edge devices because
they have small memory, constrained computing capabilities, memory bandwidth, power, and energy
budgets. The analysis shows that arithmetic operations are ”cheap” while memory accesses are ”expen-
sive” and have a cost that is a function of the size of the memory being accessed. The relative energy
cost should be used as the main guidance for designing DNNs. The hardware-aware DNNs have to be
small to fit into on-chip memory ideally, or to mitigate any communication with the external memory,
they have to use fewer operations and leverage low-precision data types.

There is a lot of ongoing research on developing networks with lower computation costs and storage
consumption without impairing classification accuracy. The efficient models became possible due to
multiple macro- and micro-architectural improvements of the models. The types of layers and their
arrangement are referred to as macro-architecture. The efficient micro-architectural approaches are:
a) very deep models are replaced with fewer layers, but with more channels, b) activation feature maps
are kept smaller, c) models are enhanced with skip and residual connections that have been proven to
improve accuracy, d) standard convolutions are replaced with depth-wise separable ones. The micro-
architecture also defines methods applied to individual layers, like replacing big convolutional kernels
with smaller ones and fusing different layers. Further techniques have been proposed to alleviate the
computing and storage challenges. Among the most common ones are distillation [6], pruning [7, 8, 9],
and quantization or a combination thereof [10]. The resulting model after knowledge distillation does not
require special treatment during inference, unlike after pruning and quantization. In summary, pruning
and quantization are the primary model compression techniques, but they require special treatment which
raises the question of selecting an implementation platform that can fully benefit from them.

Comparing different hardware platforms: Central Processing Unit (CPU), Graphics Processing Unit
(GPU), Field-Programmable Gate Array (FPGA) and Application-Specific Integrated Circuits (ASICs),
one can see that these options present a trade-off between flexibility and efficiency. While CPUs, GPUs
are highly flexible, they cannot fully benefit from the major optimization techniques, like pruning and
quantization. Only ASICs and FPGAs can fully benefit from them. The main reasons why FPGAs
and ASICs are highly efficient in comparison to general-purpose computing platforms are: a) optimized
memory, b) data specialization, c) massive parallelism, d) reduced overhead, e) algorithm-architecture
co-design. Using these advantages, one can use FPGAs to provide ad hoc solutions to facilitate compu-
tationally intensive, time-critical tasks at low-power consumption in a reprogrammable manner, unlike
ASICs. In summary, FPGA is a computing platform with a unique combination of programmability,
development cost, and efficiency that can fully benefit from various compression techniques. How can
one use these features to implement optimized DNNs efficiently?

The design of DNN topologies, custom hardware architectures for DNNs, and their implementation on
FPGA is a time-consuming process. To efficiently implement DNNs on a specific FPGA platform and
to meet certain requirements, e.g., power consumption and latency, we have to consider an enormous
amount of design parameters starting from neural topology down to hardware architecture and physical
implementation. Importantly, interdependencies between the different design layers have to be considered,
making it impossible to find optimal solutions manually. Fast and efficient implementation of DNNs on
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FPGAs can be achieved by combining recent advances: a) co-design, meaning DNN’s topologies and
hardware architectures have to be co-designed by joint optimization of performance and efficiency while
maintaining accuracy, which can be achieved using Neural Architecture Search (NAS), b) parametrizable
hardware templates to build libraries of hardware components that support a wide range of parameters
of various layers, c) facilitated hardware design using, e.g. High-level Synthesis (HLS) to accelerate the
development process.

There are many techniques for automatic exploration of the vast design space of DNNs. Among the
most successful approaches are a) Reinforcement Learning (RL), b) gradient-based, c) and evolution-
ary algorithms. Evolutionary algorithms do not require training an agent, like RL-based methods, nor
a supergraph, like gradient-based methods. It was shown that the evolutionary algorithm can outrun
RL-based method and outperforms state-of-the-art hand-designed models. The proposed methodology
is based on the evolutionary algorithm presented in [30]. The main techniques responsible for the high
efficiency of the NAS implementation are: a) multi-objective Pareto optimization, which enables multi-cri-
teria optimization, b) Bayesian sampling method to improve the candidate selection process, c) evaluation
of the candidates using ”cheap” and ”expensive” objectives to accelerate the evaluation process. There-
fore, the NAS finds fully hardware-compatible solutions that are optimal with respect to the hardware
optimization objectives and fulfill the application requirements.

To enable cross-layer optimizations, we present a flexible HLS hardware library of highly customizable
hardware architectures, which can facilitate various DNN topologies. The hardware library is written
as a collection of C/C++ template functions with HLS annotations and modularity in mind to make it
easily expandable by new layers. The hardware architecture is designed to be low power and ultra-low
latency. Primarily, this is achieved by a) keeping all weights and intermediate results in on-chip memory
since off-chip transfers consume more energy and introduce extra latency, b) external memory is only
used to read input data and write results, therefore reducing memory access to the absolute minimum,
c) separate hardware modules dedicated to each layer are connected using streaming interfaces to facilitate
fast design, debugging, interoperability, and ease of integration, d) the architecture is fully pipelined,
allowing all layers to operate concurrently and starting the computation as soon as the inputs are ready
to reduce latency and energy consumption.

One of the recent emerging trends to increase energy efficiency is to adapt the low-precision data formats
for both inference and training of DNNs. Typically training is done using floating-point formats as
they are able to provide wide dynamic range and high precision. The main challenge of using low-bit-
width data formats is the limited dynamic range compared to floating-point 32-bit (FP32). One possible
solution to compensate for the range limitation of low-bit-width data formats is to shift the data format’s
representable range to the desired location. This can be done by varying the bias value of the floating-
point equation instead of using a common bias value for all values. Our methodology uses statistical
analysis to find the optimum bias value for a given DNN model. By this method, we find the bias value,
which shifts the low-bit-width data format dynamic range to the location with the highest coverage for a
given DNN model. We demonstrate the efficiency of the approach facilitating floating-point 8-bit (FP8)
format for several datasets and state-of-the-art DNN topologies. This enables a linear reduction of the
total number of Dynamic Random Access Memory (DRAM) accesses, which increases energy efficiency
while keeping the accuracy on par with FP32 format.

To facilitate fast implementation of topologies found by the NAS and mapped onto custom hardware
architectures, we implemented the Holistic Auto machine Learning for FPGAs (HALF) framework that
is comprised of two main components, which are the hardware-aware NAS and the FPGA implementation
framework. The framework automatically produces a hardware implementation for the selected FPGA
platform that fulfills the requirements. The HALF framework accelerates the design cycle significantly,
it reduces the deployment time from months to days.
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